NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Hybrid Grid Techniques for Propulsion ApplicationsDuring the past decade, computational simulation of fluid flow for propulsion activities has progressed significantly, and many notable successes have been reported in the literature. However, the generation of a high quality mesh for such problems has often been reported as a pacing item. Hence, much effort has been expended to speed this portion of the simulation process. Several approaches have evolved for grid generation. Two of the most common are structured multi-block, and unstructured based procedures. Structured grids tend to be computationally efficient, and have high aspect ratio cells necessary for efficently resolving viscous layers. Structured multi-block grids may or may not exhibit grid line continuity across the block interface. This relaxation of the continuity constraint at the interface is intended to ease the grid generation process, which is still time consuming. Flow solvers supporting non-contiguous interfaces require specialized interpolation procedures which may not ensure conservation at the interface. Unstructured or generalized indexing data structures offer greater flexibility, but require explicit connectivity information and are not easy to generate for three dimensional configurations. In addition, unstructured mesh based schemes tend to be less efficient and it is difficult to resolve viscous layers. Recently hybrid or generalized element solution and grid generation techniques have been developed with the objective of combining the attractive features of both structured and unstructured techniques. In the present work, recently developed procedures for hybrid grid generation and flow simulation are critically evaluated, and compared to existing structured and unstructured procedures in terms of accuracy and computational requirements.
Document ID
19960029269
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Koomullil, Roy P.
(Mississippi State Univ. Mississippi State, MS United States)
Soni, Bharat K.
(Mississippi State Univ. Mississippi State, MS United States)
Thornburg, Hugh J.
(Mississippi State Univ. Mississippi State, MS United States)
Date Acquired
September 6, 2013
Publication Date
March 1, 1996
Publication Information
Publication: Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
96N29765
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available