NTRS - NASA Technical Reports Server

Back to Results
Two Wavelength Ti:sapphire Laser for Ozone DIAL Measurements from AircraftLaser remote sensing of ozone from aircraft has proven to be a valuable technique for understanding the distribution and dynamics of ozone in the atmosphere. Presently the differential absorption lidar (DIAL) technique, using dual ND:YAG lasers that are doubled to pump dye lasers which in turn are doubled into the UV for the "on" and "off' line lasers, is used on either the NASA DC-8 or P-3 aircraft. Typically, the laser output for each line is 40-mJ and this is split into two beams, one looking up and the other downward, each beam having about 20-mJ. The residual ND:YAG (1.06 micron) and dye laser energies are also transmitted to obtain information on the atmospheric aerosols. While this system has operated well, there are several system characteristics that make the system less than ideal for aircraft operations. The system, which uses separate "on" and "off" line lasers, is quite large and massive requiring valuable aircraft volume and weight. The dye slowly degrades with time requiring replacement. The laser complexity requires a number of technical people to maintain the system performance. There is also the future interest in deploying an ozone DIAL system in an Unpiloted Atmospheric Vehicle (UAV) which would require a total payload mass of less than 150 kg and power requirement of less than 1500 W. A laser technology has emerged that could potentially provide significant enhancements over the present ozone DIAL system. The flashlamp pumped Ti:sapphire laser system is an emerging technology that could reduce the mass and volume over the present system and also provide a system with fewer conversion steps, reducing system complexity. This paper will discuss preliminary results from a flashlamp-pumped Ti:sapphire laser constructed as a radiation source for a UV DIAL system to measure ozone.
Document ID
Acquisition Source
Langley Research Center
Document Type
Conference Paper
Situ, Wen
(Old Dominion Univ. Norfolk, VA United States)
DeYoung, Russel J.
(NASA Langley Research Center Hampton, VA United States)
Date Acquired
August 18, 2013
Publication Date
July 1, 1998
Publication Information
Publication: Nineteenth International Laser Radar Conference
Issue: Part 2
Subject Category
Lasers And Masers
Distribution Limits
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available