NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Light-Weight Inflatable Hypersonic Drag Device for Planetary EntryThe author has analyzed the use of a light-weight inflatable hypersonic drag device, called a ballute, (balloon + parachute) for flight in planetary atmospheres, for entry, aerocapture, and aerobraking. Studies to date include missions to Mars, Venus, Earth, Saturn, Titan, Neptune and Pluto. Data on a Pluto lander and a Mars orbiter will be presented to illustrate the concept. The main advantage of using a ballute is that aero deceleration and heating in atmospheric entry occurs at much smaller atmospheric density with a ballute than without it. For example, if a ballute has a diameter 10 times as large as the spacecraft, for unchanged total mass, entry speed and entry angle,the atmospheric density at peak convective heating is reduced by a factor of 100, reducing the peak heating by a factor of 10 for the spacecraft, and a factor of about 30 for the ballute. Consequently the entry payload (lander, orbiter, etc) is subject to much less heating, requires a much reduced thermal protection system (possibly only an MLI blanket), and the spacecraft design is therefore relatively unchanged from its vacuum counterpart. The heat flux on the ballute is small enough to be radiated at temperatures below 800 K or so. Also, the heating may be reduced further because the ballute enters at a more shallow angle, even allowing for the increased delivery angle error. Added advantages are a smaller mass ratio of entry system to total entry mass, and freedom from the low-density and transonic instability problems that conventional rigid entry bodies suffer, since the vehicle attitude is determined by the ballute, usually released at continuum conditions (hypersonic for an orbiter, and subsonic for a lander). Also, for a lander the range from entry to touchdown is less, offering a smaller footprint. The ballute derives an entry corridor for aerocapture by entering on a path that would lead to landing, and releasing the ballute adaptively, responding to measured deceleration, at a speed computed to achieve the desired orbiter exit conditions. For a lander an accurate landing point could be achieved by providing the lander with a small gliding capacity, using the large potential energy available from being subsonic at high altitude. Alternatively the ballute can be retained to act as a parachute or soft-landing device, or to float the payload as a buoyant aerobot. As expected, the ballute has smaller size for relatively small entry speeds, such as for Mars, or for the extensive atmosphere of a low-gravity planet such as Pluto. The author will discuss presently available ballute materials and a development program of aerodynamic tests and materials that would be required for ballutes to achieve their full potential.
Document ID
20000057460
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other
Authors
McRonald, Angus D.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 1995
Subject Category
Spacecraft Design, Testing And Performance
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available