NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)TeTransition metal doped solids are of significant current interest for the development of tunable solid-state lasers for the near and mid-infrared (1-4 pm) spectral region. Applications of these lasers include basic research in atomic, molecular, and solid-state physics, optical communication, medicine, and environmental studies of the atmosphere. In transition metal based laser materials, absorption and emission of light arises from electronic transitions between crystal field split energy levels of 3d transition metal ions. The optical spectra generally exhibit broad bands due to the strong interaction between dopant and host (electron-phonon coupling). Broad emission bands offer the prospect of tunable laser activity over a wide wavelength range, e.g. the tuning range of Ti:Sapphire extends from 700-1100 run. The only current transition metal laser operating in the mid-infrared wavelength region (1.8-2.4 micro-m) is CO(2+):MgF2, but its performance is severely limited due to strong nonradiative decay at room temperature. Based on lifetime data, the quantum efficiency is estimated to be less than 3 deg/0 11,21. In general, the probability for non-radiative decay via multi-phonon relaxation increases with decreasing energy gap between ground and excited state. Therefore, efficient transition metal lasers beyond -1.6 micro-m are rare. Recently, tunable laser activity around 2.3 micro-m was observed from Cr doped ZnS and ZnSe. The new lasing center in these materials was identified as Cr(2+) occupying the tetrahedral Zn site. Tetrahedrally coordinated optical centers are rather unusual among transition metal lasers. Their potential usefulness, however, has been demonstrated by the recent development of near infrared laser materials such as Cr:forsterite and Cr:YAG, which are based on tetrahedrally coordinated Cr(4+) ions. According to the Laporte selection rule, electric-dipole transition within the optically active 3d-electron shells are parity forbidden. However, a static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.
Document ID
20010000506
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Davis, V. R.
(Hampton Univ. VA United States)
Wu, X.
(Hampton Univ. VA United States)
Hoemmerich, U.
(Hampton Univ. VA United States)
Trivedi, S. B.
(Brimrose Corp. of America Baltimore, MD United States)
Grasza, K.
(Brimrose Corp. of America Baltimore, MD United States)
Yu, Z.
(Brimrose Corp. of America Baltimore, MD United States)
Date Acquired
August 20, 2013
Publication Date
February 1, 1997
Publication Information
Publication: NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment
Volume: 1
Subject Category
Solid-State Physics
Report/Patent Number
URC97148
Funding Number(s)
CONTRACT_GRANT: NAGW-2929
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available