NTRS - NASA Technical Reports Server

Back to Results
Elemental, Isotopic, and Organic Analysis on Mars with Laser TOF-MSThe in-depth landed exploration of Mars will require increasingly sophisticated robotic analytical tools for both in situ composition science [1] and reconnaissance for sample return [2]. Beyond dust, rock surfaces, and topsoil, samples must be accessed within rocks and ice, well below surface soil, and possibly in elevated deposit layers. A range of spatial scales will be studied, and for the most information-rich microscopic analyses, samples must be acquired, prepared, and positioned with high precision. In some cases samples must also be brought into a vacuum chamber. After expending such resources, it will be important to apply techniques that provide a wide range of information about the samples. Microscopy, mineralogy, and molecular/organic, elemental, and isotopic analyses are all needed, at a minimum, to begin to address the in situ goals at Mars. These techniques must work as an efficient suite to provide layers of data, each layer helping to determine if further analysis on a given sample is desired. In the spirit of broad-band and efficient data collection, we are developing miniature laser time-of-flight mass spectrometers (TOF-MS) for elemental, isotopic, and molecular/organic microanalysis of unprepared solid samples. Laser TOF-MS uses a pulsed laser to volatilize and ionize material from a small region on the sample. The laser energy and focus can be adjusted for atomic and molecular content, sampling area, and depth. Ions travel through the instrument and are detected at a sequence of times proportional to the square root of their mass-to- charge ratios. Thus, each laser pulse produces a complete mass spectrum (in less than 50 microseconds). These instruments can now be significantly miniaturized (potentially to the size of a soda can) without a loss in performance. This effort is reviewed here with an emphasis on applications to Mars exploration.
Document ID
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Brinckerhoff, W. B.
(Johns Hopkins Univ. Laurel, MD United States)
Cornish, T. J.
(Johns Hopkins Univ. Laurel, MD United States)
Date Acquired
August 20, 2013
Publication Date
July 1, 2000
Publication Information
Publication: Concepts and Approaches for Mars Exploration
Issue: Part 1
Subject Category
Lunar And Planetary Science And Exploration
Funding Number(s)
Distribution Limits
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available