NTRS - NASA Technical Reports Server

Back to Results
Acousto-Optic Imaging Spectrometers for Mars Surface ScienceNASA's long term plan for Mars sample collection and return requires a highly streamlined approach for spectrally characterizing a landing site, documenting the mineralogical make-up of the site and guiding the collections of samples which represent the diversity of the site. Ideally, image data should be acquired at hundreds of VIS and IR wavelengths, in order to separately distinguish numerous anticipated species, using principal component analysis and linear unmixing. Cameras with bore-sighted point spectrometers can acquire spectra of isolated scene elements, but it requires 10(exp 2) to 10(exp 2) successive motions and precise relative pointing knowledge in order to create a single data cube which qualifies as a spectral map. These and other competing science objectives have to be accomplished within very short lander/rover operational lifetime (a few sols). True, 2-D imaging spectroscopy greatly speeds up the data acquisition process, since the spectra of all pixels in the scene are collected at once. This task can be accomplished with cameras that use electronically tunable acousto-optic tunable filters (AOTFs) as the optical tuning element. AOTFs made from TeO2 are now a mature technology, and operate at wavelengths from near-UV to about 5 microns. Because of incremental improvements in the last few years, present generation devices are rugged, radiation-hard and operate at temperatures down to at least 150K so they can be safely integrated into the ambient temperature optics of in-situ instruments such as planetary or small-body landers. They have been used for ground-based astronomy, and were also baselined for the ST-4 Champollion IR comet lander experiment (CIRCLE), prior to cancellation of the ST-4 mission last year. AIMS (for Acousto-optic Imaging spectrometer), is a prototype lander instrument which is being built at GSFC with support by the NASA OSS Advanced Technologies and Mission Studies, Mars Instrument Definition and Development Program (MIDP). AIMS is capable of tunable spectroscopic imaging of surface mineralogy, ices and dust between 0.5 and 2.4 microns, at a resolving power (lambda/delta lambda) which is typically several hundred. The design spatial resolution, similar to IMP and SSI, will allow mapping at scales down to about 1 cm.
Document ID
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Glenar, D. A.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Blaney, D. L.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Date Acquired
August 20, 2013
Publication Date
July 1, 2000
Publication Information
Publication: Concepts and Approaches for Mars Exploration
Issue: Part 1
Subject Category
Instrumentation And Photography
Distribution Limits
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available