NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Thermal Field Imaging Using UltrasoundIt is often desirable to be able to determine the temperature field in the interiors of opaque fluids forced into convection by externally imposed temperature gradients. To measure the temperature at a point in an opaque fluid in the usual fashion requires insertion of a probe, and to determine the full field therefore requires either the ability to move this probe or the introduction of multiple probes. Neither of these solutions is particularly satisfactory, although they can lead to quite accurate measurements. As an alternative we have investigated the use of ultrasound as a relatively non-intrusive probe of the temperature field in convecting opaque fluids. The temperature dependence of the sound velocity can be sufficiently great to permit a determination of the temperature from timing the traversal of an ultrasound pulse across a chamber. In this paper we will present our results on convecting flows of transparent and opaque fluids. Our experimental cells consist of relatively narrow rectangular cavities made of thermally insulating materials on the sides, and metal top and bottom plates. The ultrasound transducer is powered by a pulser/receiver, the signal output of which goes to a very high speed signal averager. The average of several hundred to several thousand signals is then sent to a computer for storage and analysis. The experimental procedure is to establish a convective flow by imposing a vertical temperature gradient on the chamber, and then to measure, at several regularly spaced locations, the transit time for an ultrasound pulse to traverse the chamber horizontally (parallel to the convecting rolls) and return to the transducer. The transit time is related to the temperature of the fluid through which the sound pulse travels. Knowing the relationship between transit time and temperature (determined in a separate experiment), we can extract the average temperature across the chamber at that location. By changing the location of the transducer it is then possible to find the average temperature at different locations along the chamber, thereby determining the temperature profile along the system. (In the future we will construct an array of transducers. This will give us the capability to determine the temperature profile much more rapidly than at present, an important consideration if time-dependent phenomena are to be studied.) To validate our procedure we introduced encapsulated liquid crystal particles into glycerol. The liquid crystal particles' color varies depending on the temperature of the fluid. A photograph of the fluid through transparent sidewalls therefore gives a picture of the temperature field of the convecting fluid, independent of our ultrasound imaging. A representative result is shown in the Figure 1, which reveals a very satisfying correspondence between the two techniques. Therefore we have a great deal of confidence that the ultrasound imaging approach is indeed measuring the actual temperature profile of the fluid. The technique has also been applied to convecting liquid metal flows, and representative data will be presented from those experiments as well.
Document ID
20010024920
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Andereck, D.
(Ohio State Univ. Columbus, OH United States)
Rahal, S.
(Ohio State Univ. Columbus, OH United States)
Fife, S.
(Ohio State Univ. Columbus, OH United States)
Date Acquired
August 20, 2013
Publication Date
December 1, 2000
Publication Information
Publication: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference
Subject Category
Fluid Mechanics And Thermodynamics
Funding Number(s)
CONTRACT_GRANT: NAG3-2138
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available