NTRS - NASA Technical Reports Server

Back to Results
Volatile-rich Crater Interior Deposits on Mars: An Energy Balance Model of ModificationSeveral craters on Mars are partially filled by material emplaced by post-impact processes. Populations of such craters include those in the circumsouth polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. In this study, crater fill material refers to an interior mound, generally separated from the interior walls of the crater by a trough that may be continuous along the crater s circumference (i.e. a ring-shaped trough), or may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently off-center from the crater center and may be asymmetric, (i.e. not circular) in plan view shape. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. We first focus on Korolev crater in the northern lowlands. We can then apply this model to other craters in different regions. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget within the crater (and erosive processes such as eolian deflation are not necessary).
Document ID
Acquisition Source
Document Type
Conference Paper
Russell, Patrick S.
(Brown Univ. Providence, RI, United States)
Head, James W.
(Brown Univ. Providence, RI, United States)
Hecht, Michael H.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Lunar and Planetary Science XXXIV
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available