NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Planetesimal Break-Up and the Feeding of Solids to the Satellite Disk: Consequences for the Formation Timescale and Composition of the Satellites of Jupiter and SaturnIn order to create a coherent scenario of satellite formation. the source of the solids (rock-metal and ice) that will eventually make up the satellites must be considered. While it is customary to use a solar composition mixture with a gas/solid mass ratio of about 100, at the tail end of the formation of the giant planet (when satellite formation is thought to have taken place) the fraction of solids entrained in the gas (particles with sizes lower than the decoupling size about 1 m for typical nebula parameters) is likely to be significantly lower than cosmic. In particular, in the core accretion model of giant planet formation one expects low dust and rubble content at late times due to particle coagulation leading to a collisional distribution of particle sizes with most of the mas residing in objects 1 km or larger, which are not coupled to the gas and whose dynamics must be followed independently. As a result, flow of gas into circumplanetary orbits is not sufficient to constrain the mas available to form satellites.
Document ID
20030111334
Document Type
Conference Paper
Authors
Mosqueira, I. (NASA Ames Research Center Moffett Field, CA, United States)
Estrada, P. R. (NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Lunar and Planetary Science XXXIV
Subject Category
Lunar and Planetary Science and Exploration
Distribution Limits
Public
Copyright
Public Use Permitted.

Related Records

IDRelationTitle20030110578Analytic PrimaryLunar and Planetary Science XXXIV
Document Inquiry