NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral SurfaceWe report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.
Document ID
20030111461
Document Type
Conference Paper
Authors
Yakshinskiy, B. V. (Rutgers - The State Univ. NJ, United States)
Madey, T. E. (Rutgers - The State Univ. NJ, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Lunar and Planetary Science XXXIV
Subject Category
Lunar and Planetary Science and Exploration
Distribution Limits
Public
Copyright
Public Use Permitted.

Related Records

IDRelationTitle20030110578Analytic PrimaryLunar and Planetary Science XXXIV