NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Cratering Rates in the Outer Solar SystemWe use several independent constraints on the number of ecliptic comets (aka JFCs) to determine impact cratering rates from Jupiter to Pluto. Long period comets and asteroids are currently unimportant on most worlds at most sizes. The size- number distribution of comets smaller than 20 km is inferred from size-number distributions of impact craters on Europa, Ganymede, and Triton; while the size- number distribution of comets bigger than 50 km is equated to the size-number distribution of Kuiper Belt Objects. The gap is bridged by interpolation. It is notable that small craters on Jupiter's moons indicate a pronounced paucity of small impactors, while small craters on Triton imply a collisional population rich in small bodies. However it is unclear whether the craters on Triton are of heliocentric or planetocentric origin. We therefore consider two cases for Saturn and beyond: a Case A in which the size-number distribution is like that inferred at Jupiter, and a Case B in which small objects obey a more nearly collisional distribution. Known craters on Saturnian and Uranian satellites are consistent with either Case, although surface ages are much younger in Case B, especially at Saturn and Uranus. At Neptune and especially at Saturn our cratering rates are much higher than rates estimated by Shoemaker and colleagues, presumably because Shoemaker's estimates mostly predate discovery of the Kuiper Belt. We also estimate collisional disruption rates of moons and compare these to estimates in the literature .
Document ID
20030111587
Document Type
Conference Paper
Authors
Zahnle, K. (NASA Ames Research Center Moffett Field, CA, United States)
Schenk, P. (Lunar and Planetary Inst. Houston, TX, United States)
Dones, L. (Southwest Research Inst. United States)
Levison, H. (Southwest Research Inst. United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Lunar and Planetary Science XXXIV
Subject Category
Lunar and Planetary Science and Exploration
Distribution Limits
Public
Copyright
Public Use Permitted.

Related Records

IDRelationTitle20030110578Analytic PrimaryLunar and Planetary Science XXXIV
Document Inquiry