NTRS - NASA Technical Reports Server

Back to Results
Iron-Nickel Sulfide Compositional Ranges in CM Chondrites: No Simple PlanIron-nickel sulfides are found in most or all solar system environments, and are probably the only minerals found in all extraterrestrial materials on hand. Despite this ubiquity, they have only just begun the attention they deserve. The most common Fe-Ni sulfides in chondrites are troilite (FeS), pyrrhotite (Fe(1-x)S) and pentlandite (Fe,Ni)9S8. Troilite is believed to have resulted from sulfidation of metal (Fe-Ni) grains in an H2S-containing environment. Pyrrhotite is produced when friable troilite grains, which are exfoliated from the metal nucleus, are submitted to continued sulfidation. Some asteroids are known to have experienced aqueous alteration, forming products including new generations of sulfides (pyrrhotite and pentlandite). Pentlandite in particular is known to form during such alteration. However, experimental work by Lauretta has indicated that pentlandite may also have been formed during the initial sulfidation process, due to the faster diffusion rate of nickel into the forming sulfide, as compared to iron. Finally, there is considerable evidence for a family of phases intermediate between pyrrhotite and pentlandite, following the trend of the high temperature monosulfide solid solution, something not encountered in terrestrial rocks. Each sulfide has its own particular stability conditions, which have been determined for most phases. The long-term objective of our research is to characterize sulfides in chondritic materials in order to better establish the conditions under which they formed, and the subsequent processes they experienced. Ultimately, it will be possible to infer whether the sulfides in the chondrites were formed in the solar nebula or on asteroids, and if formed on the asteroids, deduce how much alteration has occurred there. Here we explore the relationships between the finest grain size portions of carbonaceous chondrites, these being matrix and chondrule rims; fine-grained materials are the most sensitive to their environment. This abstract is one of a series reporting results for chondrites, earlier work reported results for a much more limited set of CMs, as well as for CVs and CIs.
Document ID
Acquisition Source
Document Type
Conference Paper
Zolensky, Michael
(NASA Johnson Space Center Houston, TX, United States)
Le, Loan
(Lockheed Martin Corp. Houston, TX, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Lunar and Planetary Science XXXIV
Subject Category
Lunar And Planetary Science And Exploration
Report/Patent Number
Distribution Limits
Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available