NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Numerical Modeling of Shatter Cones Development in Impact CratersShatter cones are the characteristic forms of rock fractures in impact structures. They have been used for decades as unequivocal fingerprints of meteoritic impacts on Earth. The abundant data about shapes, apical angles, sizes and distributions of shatter cones for many terrestrial impact structures should provide insights for the determination of impact conditions and characteristics of shock waves produced by high-velocity projectiles in geologic media. However, previously proposed models for the formation of shatter cones do not agree with observations. For example, the widely accepted Johnson-Talbot mechanism requires that the longitudinal stress drops to zero between the arrival of the elastic precursor and the main plastic wave. Unfortunately, observations do not support such a drop. A model has been also proposed to explain the striated features on the surface of shatter cones but can not invoked for their conical shape. The mechanism by which shatter cones form thus remains enigmatic to date. In this paper we present a new model for the formation of shatter cones. Our model has been tested by means of numerical simulations using the hydrocodes SALE 2D enhanced with the Grady-Kipp-Melosh fragmentation model.
Document ID
20030111656
Document Type
Conference Paper
Authors
Baratoux, D. (Observatoire de Midi-Pyrenees Toulouse, France)
Melosh, H. J. (Arizona Univ. Tucson, AZ, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Lunar and Planetary Science XXXIV
Subject Category
Lunar and Planetary Science and Exploration
Funding Number(s)
CONTRACT_GRANT: NAG5-11493
Distribution Limits
Public
Copyright
Public Use Permitted.

Related Records

IDRelationTitle20030110578Analytic PrimaryLunar and Planetary Science XXXIV
Document Inquiry