NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel CellsFuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.
Document ID
20050217161
Document Type
Other
Authors
Kinder, James D.
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
June 1, 2005
Publication Information
Publication: Research and Technology 2004
Subject Category
Energy Production And Conversion
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 20050217161.pdf STI

Related Records

IDRelationTitle20050228985Analytic PrimaryResearch and Technology 2004