NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Vacuum Ultraviolet Radiation Effects on DC93-500 Silicone Film StudiedA space-qualified silicone polymer, DC93-500 (Dow Corning, Midland, MI), has been used as a spacecraft solar cell adhesive and has been proposed for use in a Fresnel lens solar concentrator for space power applications. Applications of DC93-500 for exterior space system surfaces require an understanding of its overall space environmental durability. Vacuum ultraviolet (VUV) radiation is among the space environment elements that can be hazardous to the properties of DC93-500, causing degradation in optical and mechanical properties. For materials or components that have not been tested previously for long-duration performance in space, such as DC93-500 in freestanding film form, ground laboratory testing is an important tool for assuring durability. However, differences between the space environment and ground laboratory testing environments lead to complexities in interpreting the ground test results. Two important differences between space and laboratory vacuum ultraviolet exposure conditions are irradiance spectra and light intensity. These important differences were the basis for laboratory experiments conducted to examine VUV wavelength dependence and VUV intensity dependence of DC93-500 degradation. Testing conducted at the NASA Glenn Research Center along with additional data provided through a grant with the University of Nebraska-Lincoln, has advanced the understanding of VUV effects on DC93-500 and has provided important conclusions regarding the use of ground laboratory VUV testing to predict the space environment performance of DC93-500.
Document ID
20050217221
Acquisition Source
Glenn Research Center
Document Type
Other
Authors
Dever, Joyce A.
(NASA Glenn Research Center Cleveland, OH, United States)
Yan, Li
Date Acquired
September 7, 2013
Publication Date
June 1, 2005
Publication Information
Publication: Research and Technology 2004
Subject Category
Energy Production And Conversion
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available