NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Isotope Effects in Collisional VT Relaxation of Molecular HydrogenA simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for rates of collisionally induced vibrational-translation (VT) energy exchange that has been shown to be accurate over variations of orders of magnitude as a function of temperature in a variety of systems. This includes excellent agreement with reported experimental and theoretical results for the fundamental self-relaxation rate of molecular hydrogen H2(v = 1) + H2 yields H2(v = 0) + H2. The analytic rate successfully follows the five-orders-of-magnitude change in experimental values for the temperature range 50-2000 K. This approach is now applied to isotope effects in the vibrational relaxation rates of excited HD and D2 in collision with H2: HD(v = 1)+H2 yields HD(v = 0)+H2 and D2(v = 1)+H2 yields D2(v = 0)+H2. The simplicity of the analytic expression for the thermal rate lends itself to convenient application in modeling the evolving vibrational populations of molecular hydrogen in shocked astrophysical environments.
Document ID
20060052472
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Bieniek, R. J.
(Missouri Univ. Rolla, MO, United States)
Date Acquired
August 23, 2013
Publication Date
August 1, 2006
Publication Information
Publication: Proceedings of the NASA Laboratory Astrophysics Workshop
Subject Category
Astrophysics
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available