Estimation of Cometary Rotation Parameters Based on Camera ImagesThe purpose of the Rosetta mission is the in situ analysis of a cometary nucleus using both remote sensing equipment and scientific instruments delivered to the comet surface by a lander and transmitting measurement data to the comet-orbiting probe. Following a tour of planets including one Mars swing-by and three Earth swing-bys, the Rosetta probe is scheduled to rendezvous with comet 67P/Churyumov-Gerasimenko in May 2014. The mission poses various flight dynamics challenges, both in terms of parameter estimation and maneuver planning. Along with spacecraft parameters, the comet's position, velocity, attitude, angular velocity, inertia tensor and gravitatonal field need to be estimated. The measurements on which the estimation process is based are ground-based measurements (range and Doppler) yielding information on the heliocentric spacecraft state and images taken by an on-board camera yielding informaton on the comet state relative to the spacecraft. The image-based navigation depends on te identification of cometary landmarks (whose body coordinates also need to be estimated in the process). The paper will describe the estimation process involved, focusing on the phase when, after orbit insertion, the task arises to estimate the cometary rotational motion from camera images on which individual landmarks begin to become identifiable.