NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Algorithm for Wavefront Sensing Using an Extended SceneA recently conceived algorithm for processing image data acquired by a Shack-Hartmann (SH) wavefront sensor is not subject to the restriction, previously applicable in SH wavefront sensing, that the image be formed from a distant star or other equivalent of a point light source. That is to say, the image could be of an extended scene. (One still has the option of using a point source.) The algorithm can be implemented in commercially available software on ordinary computers. The steps of the algorithm are the following: 1. Suppose that the image comprises M sub-images. Determine the x,y Cartesian coordinates of the centers of these sub-images and store them in a 2xM matrix. 2. Within each sub-image, choose an NxN-pixel cell centered at the coordinates determined in step 1. For the ith sub-image, let this cell be denoted as si(x,y). Let the cell of another subimage (preferably near the center of the whole extended-scene image) be designated a reference cell, denoted r(x,y). 3. Calculate the fast Fourier transforms of the sub-sub-images in the central NxN portions (where N < N and both are preferably powers of 2) of r(x,y) and si(x,y). 4. Multiply the two transforms to obtain a cross-correlation function Ci(u,v), in the Fourier domain. Then let the phase of Ci(u, v) constitute a phase function, phi(u,v). 5. Fit u and v slopes to phi (u,v) over a small u,v subdomain. 6. Compute the fast Fourier transform, Si(u,v) of the full NxN cell si(x,y). Multiply this transform by the u and phase slopes obtained in step 4. Then compute the inverse fast Fourier transform of the product. 7. Repeat steps 4 through 6 in an iteration loop, cumulating the u and slopes, until a maximum iteration number is reached or the change in image shift becomes smaller than a predetermined tolerance. 8. Repeat steps 4 through 7 for the cells of all other sub-images.
Document ID
20080048003
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Sidick, Erkin
(California Inst. of Tech. Pasadena, CA, United States)
Green, Joseph
(California Inst. of Tech. Pasadena, CA, United States)
Ohara, Catherine
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
October 1, 2008
Publication Information
Publication: NASA Tech Briefs, October 2008
Subject Category
Numerical Analysis
Report/Patent Number
NPO-44770
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available