NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Improved Joining of Metal Components to Composite StructuresSystems requirements for complex spacecraft drive design requirements that lead to structures, components, and/or enclosures of a multi-material and multifunctional design. The varying physical properties of aluminum, tungsten, Invar, or other high-grade aerospace metals when utilized in conjunction with lightweight composites multiply system level solutions. These multi-material designs are largely dependent upon effective joining techAn improved method of joining metal components to matrix/fiber composite material structures has been invented. The method is particularly applicable to equipping such thin-wall polymer-matrix composite (PMC) structures as tanks with flanges, ceramic matrix composite (CMC) liners for high heat engine nozzles, and other metallic-to-composite attachments. The method is oriented toward new architectures and distributing mechanical loads as widely as possible in the vicinities of attachment locations to prevent excessive concentrations of stresses that could give rise to delaminations, debonds, leaks, and other failures. The method in its most basic form can be summarized as follows: A metal component is to be joined to a designated attachment area on a composite-material structure. In preparation for joining, the metal component is fabricated to include multiple studs projecting from the aforementioned face. Also in preparation for joining, holes just wide enough to accept the studs are molded into, drilled, or otherwise formed in the corresponding locations in the designated attachment area of the uncured ("wet') composite structure. The metal component is brought together with the uncured composite structure so that the studs become firmly seated in the holes, thereby causing the composite material to become intertwined with the metal component in the joining area. Alternately, it is proposed to utilize other mechanical attachment schemes whereby the uncured composite and metallic parts are joined with "z-direction" fasteners. The resulting "wet" assembly is then subjected to the composite-curing heat treatment, becoming a unitary structure. It should be noted that this new art will require different techniques for CMC s versus PMC's, but the final architecture and companion curing philosophy is the same. For instance, a chemical vapor infiltration (CVI) fabrication technique may require special integration of the pre-form and
Document ID
20090008410
Acquisition Source
Marshall Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Semmes, Edmund
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2009
Publication Information
Publication: NASA Tech Briefs, January 2009
Subject Category
Documentation And Information Science
Report/Patent Number
MFS-31813-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available