NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mice Drawer SystemThe Mice Drawer System (MDS) is an Italian Space Agency (ASI) facility which is able to support mice onboard the International Space Station during long-duration exploration missions (from 100 to 150-days) by living space, food, water, ventilation and lighting. Mice can be accommodated either individually (maximum 6) or in groups (4 pairs). MDS is integrated in the Space Shuttle middeck during transportation (uploading and downloading) to the ISS and in an EXPRESS Rack in Destiny, the US Laboratory during experiment execution. Osteoporosis is a debilitating disease that afflicts millions of people worldwide. One of the physiological changes experienced by astronauts during space flight is the accelerated loss of bone mass due to the lack of gravitational loading on the skeleton. This bone loss experienced by astronauts is similar to osteoporosis in the elderly population. MDS will help investigate the effects of unloading on transgenic (foreign gene that has been inserted into its genome to exhibit a particular trait) mice with the Osteoblast Stimulating Factor-1, OSF-1, a growth and differentiation factor, and to study the genetic mechanisms underlying the bone mass pathophysiology. MDS will test the hypothesis that mice with an increased bone density are likely to be more protected from osteoporosis, when the increased bone mass is a direct effect of a gene involved in skeletogenesis (skeleton formation). Osteoporosis is a debilitating disease that afflicts millions worldwide. One of the physiological changes experienced by astronauts during space flight is the accelerated loss of bone mass due to the lack of gravitational loading on the skeleton, a loss that is similar to osteoporosis in the elderly population on Earth. Osteoblast Stimulating Factor-1 (OSF-1), also known as pleiotrophin (PTN) or Heparin-Binding Growth- Associated Molecule (HB-GAM) belongs to a family of secreted heparin binding proteins..OSF-1 is an extracellular matrix-associated growth and differentiation factor that is normally expressed in cartilage; it can stimulate the proliferation and differentiation of human osteoprogenitor cells (cell that differentiate into an osteoblast) in vitro. The Mice Drawer System will study the effects of microgravity on transgenic mouse bones in order to identify genetic mechanisms playing a role in the reduction of the bone mass observed in humans and animals as a consequence of long-duration (greater than 100 days) microgravity exposure. Onboard the ISS, MDS is relatively self-sufficient; a crewmember will check the health status of the rodents on a daily basis, by assessing them through the viewing window. Water levels will be assessed by the crew daily and refilled as needed. Replacement of the food bars and replacement of the waste filters will be conducted inflight by crewmembers every 20-days.
Document ID
20090014813
Acquisition Source
Johnson Space Center
Document Type
Other
Authors
Cancedda, Ranieri
(Genoa Univ. Genoa, Italy)
Date Acquired
August 24, 2013
Publication Date
October 1, 2008
Subject Category
Aerospace Medicine
Report/Patent Number
JSC-17962-28
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available