NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Particle Ejection and Levitation Technology (PELT)Each of the six Apollo landers touched down at unique sites on the lunar surface. Aside from the Apollo 12 landing site located 180 meters from the Surveyor III lander, plume impingement effects on ground hardware during the landings were not a problem. The planned return to the Moon requires numerous landings at the same site. Since the top few centimeters of lunar soil are loosely packed regolith, plume impingement from the lander will eject the granular material at high velocities. A picture shows what the astronauts viewed from the window of the Apollo 14 lander. There was tremendous dust excavation beneath the vehicle. With high-vacuum conditions on the Moon (10 (exp -14) to 10 (exp -12) torr), motion of all particles is completely ballistic. Estimates derived from damage to Surveyor III caused by the Apollo 12 lander show that the speed of the ejected regolith particles varies from 100 m/s to 2,000 m/s. It is imperative to understand the physics of plume impingement to safely design landing sites for future Moon missions. Aerospace scientists and engineers have examined and analyzed images from Apollo video extensively in an effort to determine the theoretical effects of rocket exhaust impingement. KSC has joined the University of Central Florida (UCF) to develop an instrument that will measure the 3-D vector of dust flow caused by plume impingement during descent of landers. The data collected from the instrument will augment the theoretical studies and analysis of the Apollo videos.
Document ID
20090022233
Acquisition Source
Kennedy Space Center
Document Type
Extended Abstract
Date Acquired
August 24, 2013
Publication Date
March 3, 2008
Publication Information
Publication: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available