NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
POSS(Registered TradeMark) Coatings for Solar Cells: An UpdatePresently, solar cells are covered with Ce-doped microsheet cover glasses that are attached with Dow Corning DC 93-500 silicone adhesive. Various antireflection coatings are often applied to the cover glass to increase cell performance. This general approach has been used from the beginning of space exploration. However, it is expensive and time consuming. Furthermore, as the voltage of solar arrays increases, significant arcing has occurred in solar arrays, leading to loss of satellite power. The cause has been traced to differential voltages between strings and the close spacing between them with no insulation covering the edges of the solar cells. In addition, this problem could be ameliorated if the cover glass extended over the edges of the cell, but this would impact packing density. An alternative idea that might solve all these issues and be less expensive and more protective is to develop a coating that could be applied over the entire array. Such a coating must be resistant to atomic oxygen for low earth orbits below about 700 km, it must be resistant to ultraviolet radiation for all earth and near-sun orbits and, of course, it must withstand the damaging effects of space radiation. Coating flexibility would be an additional advantage. Based on past experience, one material that has many of the desired attributes of a universal protective coating is the Dow Corning DC 93-500. Of all the potential optical plastics, it appears to be the most suitable for use in space. As noted above, DC 93-500 has been extensively used to attach cover glasses to crystalline solar cells and has worked exceptionally well over the years. It is flexible and generally resistant to electrons, protons and ultraviolet (UV and VUV) radiation; although a VUV-rejection coating or VUV-absorbing ceria-doped cover glass may be required for long mission durations. It can also be applied in a thin coating (< 25 m) by conventional liquid coating processes. Unfortunately, when exposed to atomic oxygen (AO) DC 93-500 develops a frosty surface. Such frosting can lead to a loss of light transmitted into the cells and destroy the essential clarity needed for a concentrator lens.
Document ID
20090022286
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Brandhorst, Henry
(Auburn Univ. AL, United States)
Isaacs-Smith, Tamara
(Auburn Univ. AL, United States)
Wells, Brian
(Auburn Univ. AL, United States)
Lichtenhan, Joseph D.
(Hybrid Plastics, Inc. Hattiesburg, MS, United States)
Fu, Bruce X.
(Hybrid Plastics, Inc. Hattiesburg, MS, United States)
Date Acquired
August 24, 2013
Publication Date
February 1, 2007
Publication Information
Publication: Proceedings of the 19th Space Photovoltaic Research and Technology Conference
Subject Category
Space Sciences (General)
Funding Number(s)
CONTRACT_GRANT: FA9453-05-M-0096
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available