NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Stochastic Representation of Chaos Using Terminal AttractorsA nonlinear version of the Liouville equation based on terminal attractors is part of a mathematical formalism for describing postinstability motions of dynamical systems characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism can be applied to both conservative systems (e.g., multibody systems in celestial mechanics) and dissipative systems (e.g., viscous fluids). The development of the present formalism was undertaken in an effort to remove positive Lyapunov exponents. The means chosen to accomplish this is coupling of the governing dynamical equations with the corresponding Liouville equation that describes the evolution of the flow of error probability. The underlying idea is to suppress the divergences of different trajectories that correspond to different initial conditions, without affecting a target trajectory, which is one that starts with prescribed initial conditions.
Document ID
20100025719
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Zak, Michail
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
May 1, 2006
Publication Information
Publication: NASA Tech Briefs, May 2006
Subject Category
Physics (General)
Report/Patent Number
NPO-41519
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available