NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Robust Optimization Design Algorithm for High-Frequency TWTsTraveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.
Document ID
20100036538
Acquisition Source
Glenn Research Center
Document Type
Other - NASA Tech Brief
Authors
Wilson, Jeffrey D.
(NASA Glenn Research Center Cleveland, OH, United States)
Chevalier, Christine T.
(Analex Corp. Cleveland, OH, United States)
Date Acquired
August 25, 2013
Publication Date
October 1, 2010
Publication Information
Publication: NASA Tech Briefs, October 2010
Subject Category
Man/System Technology And Life Support
Report/Patent Number
LEW-18378-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available