NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Thermal Properties of Microstrain Gauges Used for Protection of Lithium-Ion Cells of Different DesignsThe purpose of this innovation is to use microstrain gauges to monitor minute changes in temperature along with material properties of the metal cans and pouches used in the construction of lithium-ion cells. The sensitivity of the microstrain gauges to extremely small changes in temperatures internal to the cells makes them a valuable asset in controlling the hazards in lithium-ion cells. The test program on lithium-ion cells included various cell configurations, including the pouch type configurations. The thermal properties of microstrain gauges have been found to contribute significantly as safety monitors in lithium-ion cells that are designed even with hard metal cases. Although the metal cans do not undergo changes in material property, even under worst-case unsafe conditions, the small changes in thermal properties observed during charge and discharge of the cell provide an observable change in resistance of the strain gauge. Under abusive or unsafe conditions, the change in the resistance is large. This large change is observed as a significant change in slope, and this can be used to prevent cells from going into a thermal runaway condition. For flexible metal cans or pouch-type lithium-ion cells, combinations of changes in material properties along with thermal changes can be used as an indication for the initiation of an unsafe condition. Lithium-ion cells have a very high energy density, no memory effect, and almost 100-percent efficiency of charge and discharge. However, due to the presence of a flammable electrolyte, along with the very high energy density and the capability of releasing oxygen from the cathode, these cells can go into a hazardous condition of venting, fire, and thermal runaway. Commercial lithium-ion cells have current and voltage monitoring devices that are used to control the charge and discharge of the batteries. Some lithium-ion cells have internal protective devices, but when used in multi-cell configurations, these protective devices either do not protect or are themselves a hazard to the cell due to their limitations. These devices do not help in cases where the cells develop high impedance that suddenly causes them to go into a thermal runaway condition. Temperature monitoring typically helps with tracking the performance of a battery. But normal thermistors or thermal sensors do not provide the accuracy needed for this and cannot track a change in internal cell temperatures until it is too late to stop a thermal runaway.
Document ID
20120000441
Acquisition Source
Johnson Space Center
Document Type
Other - NASA Tech Brief
Authors
Jeevarajan, Judith
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 25, 2013
Publication Date
September 1, 2011
Publication Information
Publication: NASA Tech Briefs, September 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MSC-24764-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available