NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
High-Performance 3D Articulated Robot DisplayIn the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configuration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as wheeled, tracked, or legged mobility over surfaces. Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions. The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control surfaces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation. The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle over or on the terrain correctly. For long traverses over terrain, the visualization can stream in terrain piecewise in order to maintain the current area of interest for the operator without incurring unreasonable resource constraints on the computing platform. The visualization software is designed to run on laptops that can operate in field-testing environments without Internet access, which is a frequently encountered situation when testing in remote locations that simulate planetary environments such as Mars and other planetary bodies.
Document ID
20120001221
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Powell, Mark W.
(California Inst. of Tech. Pasadena, CA, United States)
Torres, Recaredo J.
(California Inst. of Tech. Pasadena, CA, United States)
Mittman, David S.
(California Inst. of Tech. Pasadena, CA, United States)
Kurien, James A.
(California Inst. of Tech. Pasadena, CA, United States)
Abramyan, Lucy
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 25, 2013
Publication Date
December 1, 2011
Publication Information
Publication: NASA Tech Briefs, December 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-47945
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available