NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Advisory – Planned Maintenance: On Monday, July 15 at 9 PM Eastern the STI Compliance and Distribution Services will be performing planned maintenance on the STI Repository (NTRS) for approximately one hour. During this time users will not be able to access the STI Repository (NTRS).

Back to Results
Fusion-Enabled Pluto Orbiter and LanderThe Pluto orbiter mission proposed here is credible and exciting. The benefits to this and all outer-planet and interstellar-probe missions are difficult to overstate. The enabling technology, Direct Fusion Drive, is a unique fusion engine concept based on the Princeton Field-Reversed Configuration (PFRC) fusion reactor under development at the Princeton Plasma Physics Laboratory. The truly game-changing levels of thrust and power in a modestly sized package could integrate with our current launch infrastructure while radically expanding the science capability of these missions. During this Phase I effort, we made great strides in modeling the engine efficiency, thrust, and specific impulse and analyzing feasible trajectories. Based on 2D fluid modeling of the fusion reactors outer stratum, its scrape-off-layer (SOL), we estimate achieving 2.5 to 5 N of thrust for each megawatt of fusion power, reaching a specific impulse, Isp, of about 10,000 s. Supporting this model are particle-in-cell calculations of energy transfer from the fusion products to the SOL electrons. Subsequently, this energy is transferred to the ions as they expand through the magnetic nozzle and beyond. Our point solution for the Pluto mission now delivers 1000 kg of payload to Pluto orbit in 3.75 years using 7.5 N constant thrust. This could potentially be achieved with a single 1 MW engine. The departure spiral from Earth orbit and insertion spiral to Pluto orbit require only a small portion of the total delta-V. Departing from low Earth orbit reduces mission cost while increasing available mission mass. The payload includes a lander, which utilizes a standard green propellant engine for the landing sequence. The lander has about 4 square meters of solar panels mounted on a gimbal that allows it to track the orbiter, which beams 30 to 50 kW of power using a 1080 nm laser. Optical communication provides dramatically high data rates back to Earth. Our mass modeling investigations revealed that if current high-temperature superconductors are utilized at liquid nitrogen temperatures, they drive the mass of the engine, partly because of the shielding required to maintain their critical temperature. Second generation materials are thinner but the superconductor is a very thin layer deposited on a substrate with additional layers of metallic classing. Tremendous research is being performed on a variety of these superconducting materials, and new irradiation data is now available. This raises the possibility of operating nearfuture high-temperature superconductors at a moderately low temperature to dramatically reduce the amount of shielding required. At the same time, a first generation space engine may require low-temperature superconductors, which are higher TRL and have been designed for space coils before (AMS-02 experiment for the ISS). We performed detailed analysis of the startup system and thermal conversion system components. The ideal working fluid was determined to be a blend of Helium and Xenon. No significant problems were identified with these subsystems. For the RF system, we conceived of a new, more efficient design using state-of-the-art switch amplifiers, which have the potential for 100% efficiency. This report presents details of our engine and trajectory analyses, mass modeling efforts, and updated vehicle designs.
Document ID
20170003126
Acquisition Source
Headquarters
Document Type
Contractor or Grantee Report
Authors
Thomas, Stephanie
(Princeton Satellite Systems Plainsboro, NJ, United States)
Date Acquired
April 6, 2017
Publication Date
February 7, 2017
Subject Category
Aircraft Design, Testing And Performance
Lunar And Planetary Science And Exploration
Report/Patent Number
HQ-E-DAA-TN39262
Funding Number(s)
CONTRACT_GRANT: NNX16AK28G
Distribution Limits
Public
Copyright
Public Use Permitted.
Keywords
temperature
Intersteller
engine
Pluto Orbiter
thrust
No Preview Available