NTRS - NASA Technical Reports Server

Back to Results
NASA Human Spaceflight Scenarios - Do All Our Models Still Say No?Historically, NASA human spaceflight planning has included healthy doses of life cycle cost analysis. Planners put projects and their cost estimates in a budget context. Estimated costs became expected budgets. Regardless, real budgets rarely matched expectations. So plans would come and go as NASA canceled projects. New projects would arise and the cycle would begin again. Repeatedly, NASA schedule and performance ambitions come up against costs growing at double-digit rates while budgets barely rise a couple of percent a year. Significant skepticism greets proposed NASA programs at birth, as cost estimates for new projects are traditionally very high, and worse, far off the mark for those carried forward. In this environment the current "capability driven framework" for NASA human spaceflight evolved, where long term life cycle cost analysis are even viewed as possibly counter-productive. Here, a space exploration project, for example the Space Launch System, focuses on immediate goals. A life cycle is that of a project, not a program, and for only that span of time to a near term milestone like a first test launch. Unfortunately, attempting to avoid some pitfalls in long-term life cycle cost analysis breeds others. Government audits have noted that limiting the scope of cost analysis "does not provide the transparency necessary to assess long-term affordability" making it difficult to understand if NASA "is progressing in a cost-effective and affordable manner." Even in this short-term framework, NASA realizes the importance of long-term considerations, that it must "maximize the efficiency and sustainability of the Exploration Systems development programs", that this is "critical to free resources for re-investment...such as other required deep space exploration capabilities." Assuming the value of long-term life cycle cost analysis, where due diligence meets reconnaissance, and accepting past shortcomings, the work here approaches life cycle cost analysis for human spaceflight differently. 1) If costs have traditionally been so high that adding them up is discouraging, are there any new facts on the ground offering paths to significantly lower costs? 2) If NASA's spaceflight budget and process is an over-arching constraint, with its planning limitations favoring short-term outlooks, is there a way to step outside the budget box? 3) If life cycle answers have historically been too uncertain to be useful, is there a process where stakeholders gain valuable insights merely from emphasizing a common understanding around questions? We analyze the potential life cycle cost of assorted NASA human spaceflight architectures - an architecture as a sum of individual systems, working together. With the prior questions of high costs, limited budgets and uncertainties in mind, public private partnerships are central in these architectures. The cost data for current commercial public private partnerships is encouraging, as are cost estimates for future partnership approaches beyond low Earth orbit. Private capital, directly or indirectly, an ingredient of public private partnerships, may be a significant factor in finding a path around the limits of the NASA spaceflight budget. Also, understanding and reviewing the pros, cons and uncertainties of assorted architectures can assist in developing a common understanding around key questions as important if not more so than the numbers and answers. Lastly, a scenario planning technique is briefly explored that can mature a common understanding about the agencies situation at hand and how diverse stakeholders can go forward together. Scenario planning, rather than focusing on answers, places emphasis on stakeholders developing a common understanding about the future. Putting aside costs, this is especially true of questions about sustainability and growth, results, benefits and expectations. While efficiency exercises or analysis look to reduce resources in one place to apply them elsewhere, moving around slices in a pie, scenario planning can get at the heart of the matter, growing the pie, transforming it, and making the pieces relevant. Especially important is the question of sustainability for different scenarios in the broad sense of the word - not just the narrow ability to survive or continue, but also the ability to adapt, prosper and grow.
Document ID
Acquisition Source
Kennedy Space Center
Document Type
Conference Paper
Zapata, Edgar
(NASA Kennedy Space Center Cocoa Beach, FL United States)
Date Acquired
September 20, 2017
Publication Date
September 12, 2017
Subject Category
Administration And Management
Lunar And Planetary Science And Exploration
Economics And Cost Analysis
Report/Patent Number
Meeting Information
Meeting: AIAA Space 2017
Location: Orlando, FL
Country: United States
Start Date: September 12, 2017
End Date: September 14, 2017
Sponsors: American Inst. of Aeronautics and Astronautics
Funding Number(s)
WBS: WBS 089407.01.76
Distribution Limits
Work of the US Gov. Public Use Permitted.
space systems life cycle costs
cost modeling estimation
space exploration
No Preview Available