NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mechanotransductive Regulation of Gap-Junction Activity Between MLO-Y4 Osteocyte-Like and MC3T3-E1 Osteoblast-Like Cells in Three-Dimensional Co-CultureCell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesionattachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by immunohistological observation. Increased CX43 expression is also observed with the three-dimensional co-cultures with MC3T3-E1 MCS stimulation but the increased gap-junction protein presence was limited to the osteoblast-osteocyte interface region. Previously reported PCR evaluation of osteogenic markers further corroborate that the co-cultured populations communicative networks play a role in translating mechanical signals to molecular messaging. These findings suggests an osteocyte-osteoblast gap-junction signaling feedback mechanism may regulate mechanotransduction of apoptosis initiation and transcription of cytokine signaling proteins responsible for stem cell niche recruitment much more directly than previously believed.
Document ID
20190000276
Acquisition Source
Ames Research Center
Document Type
Presentation
Authors
Juran, C. M.
(Universities Space Research Association (USRA) Moffett Field, CA, United States)
Blaber, E. A.
(Universities Space Research Association (USRA) Moffett Field, CA, United States)
Almeida, E. A. C.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
January 31, 2019
Publication Date
October 28, 2016
Subject Category
Life Sciences (General)
Report/Patent Number
ARC-E-DAA-TN36753
Meeting Information
Meeting: Annual Meeting of the American Society for Gravitational and Space Research (ASGSR)
Location: Cleveland, OH
Country: United States
Start Date: October 26, 2016
End Date: October 29, 2016
Sponsors: American Society for Gravitational and Space Biology
Funding Number(s)
CONTRACT_GRANT: NNH15CO48B
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available