NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Measurement and Analysis of Terminal Shock Oscillation and Buffet Forcing Functions on a Launch Vehicle Payload FairingThe buffet loads on a launch vehicle payload shroud can be impacted by the unsteadiness associated with a terminal shock at high subsonic speeds. At these conditions, flow accelerates to supersonic speeds on the nose of the payload fairing and is terminated by a normal shock on the cylindrical section downstream of the nose cone/cylinder shoulder. The location of the terminal shock and associated separated boundary layer is affected by the freestream Mach number, Reynolds number, and the pitch/yaw of the launch vehicle. Furthermore, even when the freestream conditions and vehicle attitude are constant, this terminal shock oscillates on the surface of the vehicle. The time-varying surface pressure associated with the terminal shock results in unsteady aerodynamic loads that may interact with vehicle structural dynamic modes and the guidance and control of the vehicle. Buffet testing of a 3-percent scale rigid buffet model of a launch vehicle cargo configuration with a tangent-ogive payload shroud was conducted in 2012 and in 2016. Initial buffet forcing functions (BFFs) utilized a coarse pressure sensor distribution on the vehicle surface in which a single longitudinal station with eight sensors observed the terminal shock environment at Mach 0.90. An examination of these circumferential pressures reveal large impulse-like pressure fluctuations and an asymmetry in pressure when the vehicle is at a nonzeroangle of attack that result in high BFFs. Revisions to the shock integration region were made based on computational fluid dynamics and shadowgraph video of shock motion to better represent the BFFs and reduce the high loads resulting from this environment. To more clearly understand this terminal shock environment, a second wind tunnel test was conducted with a dense distribution of 256 sensors at the terminal shock location. These sensor arrays presents a unique opportunity to observe the unsteady terminal shock environment and to characterize the impact of various integration schemes on the BFFs. This paper presents a summary of the development of BFFs for this terminal shock and a detailed analyses of shock region pressure coefficients, coherence, BFFs, shock location time histories, and power spectral density to help guide development of BFFs for other launch vehicle test and analysis programs.



Document ID
20200002430
Acquisition Source
Langley Research Center
Document Type
Conference Paper
Authors
Piatak, David J.
(NASA Langley Research Center Hampton, VA, United States)
Sekula, Martin K.
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
April 14, 2020
Publication Date
January 7, 2019
Subject Category
Launch Vehicles And Launch Operations
Report/Patent Number
NF1676L-30389
Report Number: NF1676L-30389
Meeting Information
Meeting: 2019 AIAA SciTech Forum and Exposition
Location: San Diego, CA
Country: United States
Start Date: January 7, 2019
End Date: January 11, 2019
Sponsors: American Institute of Aeronautics and Astronautics (AIAA)
Funding Number(s)
WBS: 585777.02.40.04.03.50.05
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available