NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Project APEX: Advanced Phobos Exploration. Manned mission to the Martian moon PhobosThe manned exploration of Mars is a massive undertaking which requires careful consideration. A mission to the moon of Mars called Phobos as a prelude to manned landings on the Martian surface offers some advantages. One is that the energy requirements, in terms of delta 5, is only slightly higher than going to the Moon's surface. Another is that Phobos is a potential source of water and carbon which could be extracted and processed for life support and cryogenic propellants for use in future missions; thus, Phobos might serve as a base for extended Mars exploration or for exploration of the outer planets. The design of a vehicle for such a mission is the subject of our Aerospace System Design course this year. The materials and equipment needed for the processing plant would be delivered to Phobos in a prior unmanned mission. This study focuses on what it would take to send a crew to Phobos, set up the processing plant for extraction and storage of water and hydrocarbons, conduct scientific experiments, and return safely to Earth. The size, configuration, and subsystems of the vehicle are described in some detail. The spacecraft carries a crew of five and is launched from low Earth orbit in the year 2010. The outbound trajectory to Mars uses a gravitational assisted swing by of Venus and takes eight months to complete. The stay at Phobos is 60 days at which time the crew will be engaged in setting up the processing facility. The crew will then return to Earth orbit after a total mission duration of 656 days. Both stellar and solar observations will be conducted on both legs of the mission. The design of the spacecraft addresses human factors and life science; mission analysis and control; propulsion; power generation and distribution; thermal control; structural analysis; and planetary, solar, and stellar science. A 0.5 g artificial gravity is generated during transit by spinning about the lateral body axis. Nuclear thermal rockets using hydrogen as fuel are selected to reduce total launch mass and to shorten the duration of the mission. The nuclear systems also provide the primary electrical power via dual mode operation. The overall spacecraft length is 110 meters and the total mass departing from low Earth orbit is 900 metric tons.
Document ID
19930008927
Acquisition Source
Legacy CDMS
Document Type
Contractor Report (CR)
Date Acquired
September 8, 2013
Publication Date
April 1, 1992
Subject Category
Spacecraft Design, Testing And Performance
Report/Patent Number
NASA-CR-192056
AERO-483
NAS 1.26:192056
Accession Number
93N18116
Funding Number(s)
CONTRACT_GRANT: NASW-4435
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available