NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Selective Plasma Deposition of Fluorocarbon Films on SAMsA dry plasma process has been demonstrated to be useful for the selective modification of self-assembled monolayers (SAMs) of alkanethiolates. These SAMs are used, during the fabrication of semiconductor electronic devices, as etch masks on gold layers that are destined to be patterned and incorporated into the devices. The selective modification involves the formation of fluorocarbon films that render the SAMs more effective in protecting the masked areas of the gold against etching by a potassium iodide (KI) solution. This modification can be utilized, not only in the fabrication of single electronic devices but also in the fabrication of integrated circuits, microelectromechanical systems, and circuit boards. In the steps that precede the dry plasma process, a silicon mold in the desired pattern is fabricated by standard photolithographic techniques. A stamp is then made by casting polydimethylsiloxane (commonly known as silicone rubber) in the mold. The stamp is coated with an alkanethiol solution, then the stamp is pressed on the gold layer of a device to be fabricated in order to deposit the alkanethiol to form an alkanethiolate SAM in the desired pattern (see figure). Next, the workpiece is exposed to a radio-frequency plasma generated from a mixture of CF4 and H2 gases. After this plasma treatment, the SAM is found to be modified, while the exposed areas of gold remain unchanged. This dry plasma process offers the potential for forming masks superior to those formed in a prior wet etching process. Among the advantages over the wet etching process are greater selectivity, fewer pin holes in the masks, and less nonuniformity of the masks. The fluorocarbon films formed in this way may also be useful as intermediate layers for subsequent fabrication steps and as dielectric layers to be incorporated into finished products.
Document ID
20100014082
Acquisition Source
Goddard Space Flight Center
Document Type
Other - NASA Tech Brief
Authors
Crain, Mark M., III
(Louisville Univ. KY, United States)
Walsh, Kevin M.
(Louisville Univ. KY, United States)
Cohn, Robert W.
(Louisville Univ. KY, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2006
Publication Information
Publication: NASA Tech Briefs, January 2006
Subject Category
Man/System Technology And Life Support
Report/Patent Number
GSC-14440
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available