NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
human health countermeasures - partial-gravity analogs workshopThe experimental conditions that were deemed the most interesting by the HHC Element lead scientists are those permitting studies of the long-term effects of exposure to (a) chronic rotation when supine or in head down tilt (ground-based); and (b) long-radius centrifugation (space based). It is interesting to note that chronic ground based slow rotation room studies have not been performed since the 1960's, when the USA and USSR were investigating the potential use of AG for long-duration space missions. On the other hand, the other partial gravity analogs, i.e., parabolic flight, HUT, suspension, and short-radius centrifugation, have been regularly used in the last three decades (see review in Clément et al. 2015). Based on the workshop evaluations and the scores by the HHC scientific disciplines indicated in tables 3 and 4, simulation of partial G between 0 and 1 should be prioritized as follows: Priority 1. Chronic space-based partial-G analogs: a. Chronic space-based long-radius centrifugation. The ideal scenario would be chronic long-radius centrifugation of cells, animals and humans in a translational research approach - ideally beyond low earth orbit under deep space environmental effects and at various rotations - to obtain different G-effects. In this scenario, all physiological systems could be evaluated and the relationship between physiological response and G level established. This would be the most integrative way of defining, for the first time ever, G-thresholds for each physiological system. b. Chronic space-based centrifugation of animals. Chronic centrifugation of rodents at various G levels in space would allow for determination of AG thresholds of protection for each physiological system. In this case, all physiological systems will be of interest. Intermittent centrifugation will be of secondary interest. c. Chronic space-based centrifugation of cell cultures (RWV). Bioreactor studies of cells and cell cultures of various tissues at various G levels would allow for intracellular investigations of the effects of partial-G. Priority 2. Acute, intermittent space based partial-G analogs: a. Acute, intermittent space-based short radius human centrifugation. Intermittent centrifugation of humans would allow determination of thresholds of AG for protection of astronaut health in space. Priority 3. Chronic ground-based partial-G analogs: a. Chronic centrifugation of supine or head-down tilted humans. b. Chronic head-up tilt in humans. c. Chronic head-out graded dry immersion in humans. d. Chronic partial suspension of rodents e. Chronic rotating bioreactor cell culture studies (RWV) Priority 4. Acute ground based partial-G analogs. a. Parabolic flights. Very acute and short term effects of G levels between 0 and 1 in humans for fast responding systems like cardiovascular and sensorimotor as well as for acute responses in cell cultures and animals. b. Other acute models as indicated in table 3.
Document ID
20160008093
Document Type
Technical Memorandum (TM)
Authors
Barr, Yael
(NASA Johnson Space Center Houston, TX, United States)
Clement, Gilles
(Wyle Science, Technology and Engineering Group Houston, TX, United States)
Norsk, Peter
(Wyle Science, Technology and Engineering Group Houston, TX, United States)
Date Acquired
June 29, 2016
Publication Date
July 1, 2016
Subject Category
Aerospace Medicine
Report/Patent Number
NASA/TM-2016-218605
S-1223
JSC-CN-36582
Distribution Limits
Public
Copyright
Public Use Permitted.

Available Downloads

NameType 20160008093.pdf STI