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ABSTRACT

The response of an insulated wall, over which a heated fluid flows, to a sinusoidally
forced fluid temperature was used to calculate the convective heat-transfer coefficients.
An exact solution is given which accounts for thermal conductivity and the location of the
sensed wall temperature in one-dimensional heat-transfer problems. Charts are in-
cluded to aid in the calculation. A comparative analysis was made of solutions that do not
account for thermal conductivity and the location of the sensed wall temperature and those
that do. If the exact solution is not used, errors greater than 23 percent are possible.
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DETERMINATION OF CONVECTIVE HEAT-TRANSFER COEFFICIENTS
ON ADIABATIC WALLS USING A SINUSOIDALLY FORCED
FLUID TEMPERATURE
by Ronald G. Huff

Lewis Research Center

SUMMARY

The response of an insulated wall, over which a heated fluid flows, to a sinusoidally
forced fluid temperature was used to calculate the convective heat-transfer coefficients.
An exact solution is given which accounts for thermal conductivity and the location of the
sensed wall temperature in one-dimensional heat-transfer problems. Charts are in-
cluded to aid in the calculation. A comparative analysis was made of solutions that do not
account for thermal conductivity and the location of the sensed wall temperature and those
that do. If the exact solution is not used, errors greater than 23 percent are possible.

INTRODUCTION

Both transient and steady-state analyses have been used to design calorimeters for
use in rocket engines and aerodynamic heat-transfer studies. The steady-state calorim-
eter makes use of the temperature gradient in a material of known conductivity and geom-
etry; the transient type makes use of the response of a material to a driving temperature,
that is, the response of a thin disk to a step change in the surrounding fluid.

The response of a wall to a fluid that flows over it and has a sinusoidally oscillating
temperature has been used to calculate the convective heat-transfer coefficient h. The
solution found by Anderson (ref. 1) for the convective heat-transfer coefficient (herein
called slug solution), however, does not account for thermal conductivity or the location
of the measured wall temperature. An estimate, given by Anderson, of ''the error in the
measured time constant 7 caused by heat conduction through the skin'' is 1.5 percent.
Bell (ref. 2) neglects the effect of thermal conductivity by designing his experiments in
such a way as to cause iis eifect to drop out of his equations, which are in series form.



The objective of this analytical investigation, conducted at NASA Lewis Research
Center, was to find a solution for the convective heat-transfer coefficient as a function of
the phase lag between the fluid and wall temperatures. Such a solution would take into
account the thermoconductivity as well as the location of the measured wall temperature.

The solution is presented along with charts that (for the wall temperature measured
at the insulated side of the wall) can be used to determine the heat-transfer coefficient as
a function of frequency, wall properties, wall thickness, and phase lag. A comparison is
made between this solution and that of Anderson (ref. 1), both of which assume that the
back surface of the wall x = L. is perfectly insulated.

The slug solution may be substituted for the present analysis when conductivity and
temperature-sensor location are not important.

SYMBOLS
C specific heat of wall material, Btu/(Ib)(°R); J/(kg)(K)
CON function defined in eq. (4b)
f frequency of temperature oscillation, cps; Hz
h convective heat-transfer coefficient on surface of wall, Btu/(in. 2)(sec)(OR);
2
W/(m®)(K)
K thermal conductivity, Btu/(in.)(sec)(°R); J/(m)(sec)(K)
L thickness of wall, in.; m
= o

E wall temperature, TW - TG, R; K
T mean temperature, oR,' K

. - 0.
ATG amplitude of gas temperature, TG - TG’ R; K
X distance measured from fluid-wall interface into wall, in.; m
a thermal diffusivity, K/pC

€g function defined after eq. (4f)

n frequency and diffusivity perimeter, w/Za—
6 time, sec

T constant equal to 3.1416 rad

y density of wall material, 1b/in.3; kg/m°

T time constant, pCL/h




¢ phase shift between forced fluid temperature TG and wall temperature Tw’ <0 for
Tw lagging TG’ deg

w angular velocity of forced fluid temperature TG’ 27f rad/sec
Subscripts:

G fluid flowing over wall

s  values calculated with Anderson’'s slug-type solution (ref. 1)

w  wall over which fluid flows

DIFFERENTIAL EQUATIONS AND ASSUMPTIONS

The solution for the heat-transfer coefficient as a function of phase lag ¢, frequency
of fluid-temperature oscillation f, wall properties, and location of the sensed wall tem-
perature T is now given. Consider an infinite plate on one side of which a fluid flows
over the surface (x = 0). The other side is insulated (x = L). The system is illustrated
in figure 1.

Fluid flow

Surface exposed to fluid

non
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> >

7/, Insulated surface 7

Figure 1. - Basic heat-transfer model.

The applicable differential equation is
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where

T difference between wall temperature at any location in wall and average fluid tem-
perature

X distance into wall from fluid side of wall
a thermal diffusivity, K/pC

8 time, sec



This solution assumes that the
(1) Thermal conductivity is finite and constant
(2) Convective heat-transfer coefficient h is constant
(3) Density p and specific heat C of the wall are constant
(4) Surface of the wall at x = L is insulated
(5) Surface of the wall at x = 0 is exposed to a fluid whose temperature is given by

Tg - Tg = ATGe'iwe )

where

TG fluid temperature

_’fG average fluid temperature

ATG amplitude of gas temperature

w angular velocity of temperature oscillation, 27f rad/sec

(6) Convective heat transfer at x =0 is

K %I_ =hg(T - T) (3)

(7) Heat conduction through the wall is one dimensional

For the solution to the differential equation (1), a product solution is assumed and the
boundary conditions are applied (i.e., an insulated surface at x = L, assumption (4), and
convective heat transfer at x = 0, assumption (6). The details of the solution are given
in the appendix. The convective heat-transfer coefficient is

hg 1- ean(cos 2nL + sin 29L) - CON [ean(cos 2nL - sin 27L) - 1]

(4a)
K7 ean sin 2nL + CON <e2nL cos 2L + 1)

where

con A Lintang -1 1 ,<g | (4b)
A(x,L,n) +tan ¢

for the wall temperature lagging the fluid temperature




Ax,L,n) = 2L cos n2L - x) + cos 7x

(4c)
eZn(L-x) sin n(2L - X) + sin 7x
where
n =g/ (4d)
2a

This solution is simplified if the wall temperature is measured at x = L, which for

many applications is the easiest place to locate a sensor. The CON used in equation (4a)
reduces to

CON =tan(p - 7L) at x=1L (4e)

The solutions to equation (1) may be used to determine the convective heat-transfer coef-
ficient when thermal conductivity is an important factor.

The computations made for the convective heat-transfer coefficient with the present
solution (egqs. (4)) are time consuming. The values for h/Kn were calculated as a func-
tion of nL and ¢, when x = L, and are plotted in figure 2. Using x = L (temperature
sensor located at the insulated surface) is reasonable because a temperature sensor is
easily installed at this point.

The ratio of the amplitude of the wall- to the fluid-temperature oscillation for x = L
can be written by inspection of equation (A15). The ratio is

Tw-Tg T 9e2ML

= AT
Te-Tg “°G [1

2 2
_Kn , ¢2nlg cos(eG +29L)| + Kn _ o2nlg sin(e s + 2nL)
bg hg

(4f)

where

2
E-= 1+2ﬁ+2<ﬁ)
hg  \hg
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and

1 1

h
——Ci+1
Kn

€g = tan

This ratio can be used to determine the magnitude of the fluid-temperature oscillation
TG that would yield a measurable wall-temperature oscillation at x = L.

The determination of the effect of wall properties and plate thickness L on the cal-
culation of h was aided by the expanding of equation (4a) to a series form at x = L. The
resulting equation for hG is

2 3

h,-pCLw [y 3+tan’o 2/2 4 3/3 54+tan’o +10tan

4.4
e pL* ... (4g)
-tan ¢ 3tan ¢ 3 5tan2¢

In this equation, ¢ < 0. Convergence of this series must be checked. However, if
nL <<'1 and reasonable values of ¢ (e.g., -450) are used, the series will converge.

In this report, Anderson's solution is referred to as the slug solution because it
equates the rate of change of the temperature of a mass or slug pL to the convective
heat transfer from a fluid that flows over the slug. The slug solution is derived from the
differential equation

oT

-r_a;‘hTW:TG (5)

and assumes that
(1) The thermal conductivity K is infinite (i.e., no temperature gradient in the
wall)
(2) The convective heat-transfer coefficient h is constant
(3) The density p and specific heat C of the wall are constant
(4) One wall surface is insulated .
(5) The other wall surface is exposed to a fluid whose temperature is given by

Tg = ?G + AT sin wf (6)

The solution to the differential equation (5) is



T = ——ir_g—-—{sin [we - tan'l(wT)]} (7a)

1+ wz'rz

where

r =PCL (7b)
is the time constant. The phase lag between the wall and the fluid is tan'1 WwT = Qg

from which the convective heat-transfer coefficient can be written as

hg,s = £l ®
tan @

where ¢ is < 0.

CRITERION FOR USE OF SLUG SOLUTION

Comparison of the series form of the present solution (eq. (4g)) for hg with that of
the slug solution (eq. (8)) shows that the coefficient of the series solution is simply hG, s
If hG, s is substituted in the series solution and all terms having powers greater than
second power are neglected, the series solution can be written as

h 2
G _y.3+tan" g2 (9a)
th 3 tan ¢

where ¢ < 0, and nL is assumed to be much smaller than 1. The value of ¢ canand
should be approximately -45° (as discussed in the section Optimum Phase Angle). The
curves in figure 2 can be used to determine the proper frequency that, for a given ma-
terial, nL, and hG, will yield the value ¢ = -45%, The selected value of nL is then
used in equation (9a) along with ¢ = -45° to evaluate the ratio hG/hG, g+ For these
conditions, equation (9a) reduces to

h

G 4 2 L

—& -1+3mp?. =142 2ng (9b)
hg, s 3K
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where ¢ = -45°% and L << 1. The second term in equation (9b), an approximation to
(h - hs)/h, can be used to approximate the error in h if the slug solution, instead of the
present solution, is used to calculate h. The term may also be used as a first-order
correction if the slug solution is used to calculate h.

Values for the second term in equation (9b) were calculated for 347 stainless steel
and copper and are compared in table I with the values of (h - hs)/h % 100 percent. The
agreement is good, even though the absolute value of the difference is large in several
cases. Care must be exercised in using equations (9a) and (3b) because only two terms
of the series are used, and if the value of nL approaches 1, convergence is not ensured.
In addition, values for ¢ that approach either 0° or 90° will greatly affect hG/hG, s’

In addition to the aforementioned criteria to be used in the choice of solutions for
calculating h, a number of calculations were made and are presented to illustrate the
practical application of the solutions first given for h.

APPLICATION OF EQUATIONS TO ENGINEERING MATERIALS

The calculation of the relation between phase lag angle ¢ and forcing frequency f
necessitates that assumptions be made for values of the convective heat-transfer coeffi-
cient and the properties of the wall. The value of the convective heat-transfer coeffi-
cient hG assumed in this calculation is 0.001 Btu per square inch per second per °r
(2.942><103 W/(mz)(K)), unless otherwise noted. The wall properties used are those of
347 stainless steel and are given as follows:

Average temperature, f, OR; K . o e e e e e e e e 1000; 555.5
Density, p, 10/in. 5; Kg/MmS. « o v v e e e e 0.286; 7.92x10°
Specific heat, C, Btu/(I0)(°R); J/(RD(K) - + + « « v v v v v e e et . 0.128; 0.536x10°
Conductivity, K, Btu/(in.)(sec)(°R); J/(m)(sec)(K) . . . . . . v . . . . 0.000253; 18.92

These values are approximately those of 347 stainless-steel materials used for simulated
rocket-nozzle heat-transfer studies conducted in an air facility. The value of hG is ap-
proximately 5 to 10 times greater than those found by Anderson (ref. 1) in his wind-tunnel
tests on a cone.

Comparison of Phase Lags
The calculated phase lags ¢ as a function of frequency f are shown in figure 3. As

would be expected, the slug solution phase lag falls between the values calculated with
equation (4a) (present solution) at x =0 and at x = L. The decreasein ¢ at x=0 for

12




f > 0.45 hertz can be explained by the reflected wave that counteracts the phase shift of

the primary wave.

Phase shift, @, deg

NN

/
I/
/

Calculated phase Distance measured —

lag, from fluid-wall

interface into wall, 7|

—— — Slug solution (from eq. (8) ----- -----------

Present solution (eq. (4a)) 0.040 (1. 016x1073) 7|
— - — Present solution (eq. (4a)) 0 (0) —
A T N s N S A
1 .2 3 4 .5 .6

Frequency, cps (Hz)

Figure 3. - Phase lag as function of forced fluid-temperature frequency
for 347 stainless steel. Fluid temperature, 1000° R (555.5 K); convec-
tive heat-transfer coefficient at fluid surface, 0.001 Btu per square
inch per second per °R (2. 942x103 W/mA)(K)).

Optimum Phase Angle

When the phase lag is measured for use in either of the solutions, an optimum value
exists. At this optimum value, a given error in phase lag will produce a minimum error

in the heat-transfer coefficient. Figure 4 shows this optimum phase lag to be approxi-
mately -450, or exactly -450 if the slug solution is used. If equation (4a) is used with

x = L = 0.040 inch (1.016><10'3 m), the optimum ¢ increases slightly, which is the rea-

son for choosing a frequency that will give a value for ¢ of approximately -45°,

The values for the phase lag calculated from both the slug solution and the present

Phase Lag Differences

13
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Figure 4. - Change in convective heat-transfer coefficient for incremental change in phase
lag as function of phase lag. (For present solution, temperature was measured at insu-
lated surface.

solution do not agree. The percent difference was calculated to determine the magnitude
of this disagreement. The percentage is based on the present solution and is shown as a
function of frequency in figure 5. For the case where the wall is 0.040 inch (1.016
><10'3 m) thick and the temperature measurement made is assumed to be at the insulated
surface, the minimum difference is 6 percent. The frequency for this point is 0.175
hertz and the phase lag is -61. 50, If it is possible to measure the temperature on the
surface over which the fluid flows (x = 0), the difference can be reduced by using a lower
frequency. For a phase lag of -450, the difference at x = L. is 6.3 percent while at

x =0 it is 4 percent.
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Phase shift difference, [((o - (ps)/(p] 100, percent

F Inlsulafed
wall
10 surface,
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Wall surface
exposedto |
\ fluid, ]
x=0

P

0 1 2 3 4 .5 .6

F;equency, f, cps (Hz)

Figure 5. - Difference in phase lag due to location of
temperature sensor as function of frequency for
347 stainless steel. Fluid temperature, 1000° R
(555.5 K); convective heat-transfer coefficient at
fluid surface, 0,001 Btu per square inch per
second per °R (2.942x103 ngm )(K)); wall thick-
ness, 0,040 inch (1.C16x10™° m).

Convective heat-transfer-coefficient difference, [(h - hs)lh] 100, percent
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Figure 6. -~ Difference in convective heat-transfer co-
efficient due to location of wall temperature sensor
as function of frequency for 347 stainless steel. Fluid
temperature, 1000° R (555, 5 K); convective heat-
transfer coefficient at fluid surface, 0. 001 Btu ger
square inch per second per °R (2. 942x103 Wi(ma)(K));
wall thickness, 0.040 inch (1. 016x10-3 m).
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Heat-Transfer-Coefficient Differences

Since a minimum value of the phase lag differences in the case where x = L. was ob-
served in figure 5, a similar minimum would be expected to exist when the heat-transfer-
coefficient differences are calculated. Figure 6, however, shows that the lowest possible
difference calculated for x = L is greater than 7 percent and occurs at a lower frequency
than does the minimum phase lag difference shown in figure 5. At phase lags of -450, the
heat-transfer-coefficient differences are 9.6 percent at x = L. and 7 percent at x = 0.
The differences will increase with increased frequency or phase lag angle.

Effect of Heat-Transfer Coefficient

Up to this point in the calculation, the convective heat-transfer coefficient has been

g 100 -

§ Convective heat-transfer

L I coefficient, —
= h

5 Btullin. A(sec)(°R)_ (WHmA)(K))

‘g_; P . T = T

S o 0.001 | (2.942x10%)

g

S8

5~ L /

i l

E im 20 Phas: ag, ) _
I 1 . deg // //

8 £ 7

o= ﬂ Y

2 2 0.003 (8. 826x10°) ]
g 1 // )

5 145

© 0 1 2 3 4 5 6

Frequency, f, cps (.Hz)

Figure 7. - Difference in convective heat-transfer co-
efficient for 347 stainless steel. Fluid temperature,
1000° R (555. 5 K); wall thickness, 0.040 inch
{1.016x107 m); temperature measured at insulated
surface.

assumed to be 0.001 Btu per square inch per second per °r (2.942><10:3 W/(mz)(K)).

Shown in figure 7 are the calculated heat-transfer-coefficient differences at x = L = 0.040
inch (1.016><10'3 m) for h = 0.001 Btu per square inch per second per °R (2.942><103 w/
(m2) (K)) and for h = 0.003 Btu per square inch per second per °R (8. 826x10° W/(mz)(K)).
Figure 7 shows that, for low frequencies, the differences are greater for the higher h.
When a phase lag angle of -45% is desired (to minimize the effect of errors in phase lag
measurement), the differences are 9.6 percent for h = 0.001 Btu per square inch per
second per °R (2.942><103 W/(mz)(K)) and 23 percent for h = 0.003 Btu per square inch
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per second per °R (8. 826><103 W/(mz)(K)). With a phase shift of -45° used as a criterion,
it is concluded that increasing the heat-transfer coefficient will increase the heat-
transfer-coefficient difference.

Effects of Temperature

The effect of wall temperature on the convective heat-transfer-coefficient difference
is shown in figure 8. Because the temperature affects the wall properties, two tempera-

[T
=€ 16 Average wall
o § temperature,
g8 Tw
Sg 12 Phase lag, | op = (k)
L= 9, L1
23 deg 1000 (555. 57
g 8 L
Te 5y
2. 4 T 2000 (1201
P T -~
g5 A
c2 — 145
O -
[ |
0 . .08 12 .16 .20

Frequency, f, cps (Hz)

Figure 8. - Difference in convective heat-
transfer coefficient due to change in wall
temperature as function of frequency for
347 stainless steel. Convective heat-
transfer coefficient, 0.001 Btu per square

inch ger second per °R (2, 942x103

WitmeNK); wall thickness, 0.040 inch

(1.016x10°3 m); temperature measured

at insulated surface.

tures were used, 1000° R (555.5 K) and 2000° R (1101 K). The wall properties for
347 stainless steel at 1000° R (555.5 K) were given in the first part of this section and for
2000° R (1101 K) are as follows:

Density, p, 1b/in.%; kg/m3. . . . .. ... 0.286; 7.92x10°
Specific heat, C, Btu/(I)CR); J/KE) » « « « « v v v v e e 0.151; 0.632x10°
Conductivity, K, Btu/(in.)(sec)(°R); J/(m)(sec)(®) . . . . . .. .. .. 0.000365; 27.29

The values for the heat-transfer-coefficient differences calculated at x = L. show that a
2-percent decrease in the differences exists for a two-to-one change in wall temperature.
Property changes due to temperature, in the case of 347 stainless steel, will not signifi-

nnntl ffant
on “‘dvv affant thc COn‘v’Cvtch hcat +1nnnc""or rhfforn neog

17



Effects of Wall Thickness

Wall thickness can be expected to have an appreciable effect on the convective heat-
transfer-coefficient difference, as shown in figure 9. For a frequency that will give a
¢ value of -45° and with the use of x = L, the following differences can be obtained:
for L equal to 0.010 inch (0.254><10'3 m), 2.6 percent; for L equal to 0.060 inch
Q1. 524x10™3 m), 14.7 percent. For thin walls, the differences do not increase rapidly
with frequency. The thicker walls cause the differences to increase at lower frequencies

than those of the thin wall. Inspection of equation (9a) shows that the differences approach
zero as L approaches zero.

T T T T 1
Wall thickness,
L,

in. {m)

0,060 (4.064x1073)
§ 50 —— .00 (L 016x10'3£
g ——-— (32 (0.8128x1073)
e — === 010 (.250x107)
f 40 //
g% / =
ig: §. 30 // /‘/
P / ) prd
2~ Ty T =
SE — Pl =
Im J-:m .// — //
gé P I /‘/’ L 41
2= u ——F T L
FE o g S e
g JEN N A A U N D) A A R Sy F S P
< 0 04 .08 .12 .16 .0 .4 .28 .3 3% .40 .44

Frequency, f, cps (Hz)

Figure 9. - Difference in convective heat-transfer coefficient due to change in wall thickness as
function of frequency for 347 stainless steel. Fluid temperature, 1000" R (555. 5 K); convectlve
heat-transfer coefficient, 0,001 Btu per square inch per second per °R (2, 9&2)(103 Wilm )(K))
temperature measured at insulated surface.

Effects of Thermal Conductivity

The effect of thermal conductivity on the convective heat-transfer-coefficient differ-
ence is shown in table I. A comparison of copper and 347 stainless steel, having wall
thicknesses of 0.060 and 0.040 inch (1. 524x10"5 and 1. 016x1073 m), respectively, shows
that the higher conductivity of copper decreases the heat-transfer-coefficient differences
by 14. 2 percent. Equation (9a) shows that, as K approaches infinity, the differences
approach zero.
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COMPARISON OF SOLUTIONS

The slug solution (ref. 1), which neglects the effect of thermal conductivity and
temperature-measurement location, may be used in place of the more complicated solu-
tion (eqs. (4)) provided that the system is designed properly. Equation (4g) may be used
to estimate the error in h when the slug solution is used provided that L. < 1.0. Ifa
maximum error of 6 percent is to be tolerated, nL cannot exceed 0.2 and ¢ must be
approximately -45%, Improper design will result in large errors. For example, a wall
made of 347 stainless steel, 0.060 inch (1. 524x10™3 m) thick, with the temperature mea-
sured at the insulated face will give errors greater than 23 percent if phase lags exceed
-45%, Inspection of equation (4g) shows that if the slug solution is used, thin walls are
essential. Although low frequency improves the accuracy of the slug solution, it is well
to keep in mind that, at least for x = L, the limit of hG/hG, s #1. Also, the accuracy in
the measurement of the phase lag angle becomes very poor as ¢ approaches zero (see
fig. 4). High thermal conductivity is desirable as are low density and specific heat. If
the phase lag is —450, an increase in the heat-transfer coefficient will increase the error
when the slug solution is used (see fig. 7). An increase in the wall temperature of
347 stainless steel from 1000° to 2000° R (555.5 to 1101 K) resulted in only a 2-percent
change in the error (fig. 8).

Table I summarizes the results of the comparison made of equations (4a) to (4e)
and (8). This table presents calculations made for phase lags of -45°,

CONCLUDING REMARKS

The convective heat-transfer coefficient h can be calculated for a fluid flowing over
a surface with one insulated side if the fluid temperature is varied sinusoidally. The
phase lag between the fluid and wall temperatures, along with the frequency of oscillation
and wall material properties, can be used to calculate the convective heat-transfer coef-
ficient h. Two solutions for h are available. Both require a phase lag of approximately
-45° to minimize the error in h due to errors made in measuring the phase lag angle.
Anderson's slug solution (ref. 1) does not account for the wall thermal conductivity or the
location of the measured wall temperature, which may result in an error greater than
23 percent in h.
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A general one-dimensional solution is given which accounts for a finite thermal con-
ductivity and for the wall-temperature location. This solution is greatly simplified if the
wall temperature is measured at the insulated surface. Neither solution is applicable
when two- or three-dimensional heat transfer in the wall is important.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 25, 1968,
122-29-07-03-22.
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APPENDIX - DERIVATION OF HEAT-TRANSFER COEFFICIENT
AS FUNCTION OF PHASE LAG

Determination of Boundary Conditions

The temperature response of a wall, which has one surface insulated at x = L. and
the other surface exposed to a fluid with a temperature that varies sinusoidally at x =0,

is calculated as follows: First, the boundary conditions are determined with the assump-
tion that

_ -iw6
T G= ATGe
For x =0,
hGEATGe‘“‘)e - T(O,G)] = -K 91'8(_0’_9_)
X
For x=1
K aT(0,6) _ 0
oX
The governing differential equation is
2
0 T(x,9) — 1_ aT(X, 9) (Al)
ax2 o 06
For the solution to the differential equation, assume a product solution
T = X(x) - F(9) (A2)
Then
L-F) - X
0x
2= _
GRS IO JE
X
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and
T _ xx) - F'(9)
06
Substituting these expressions in the differential equation (A1) gives
F(o) - X'(%) =iX(x) . F()

or

1 F'(9)
® F(p)

X' (X)
X(x)

(A3)

Since either side of this equation is independent of the other variable, assume that each

2

side must be equal to a constant, A”. Now, xz can be equal to zero, greater than zero,

or less than zero. Then, setting either side of equation (A3) equal to AZ gives

X"(x) _ )\2
X(x)

and

Then

In F = A2ag

— 2
F = cet @0

I A2

(A4)

(A5)

=0, F =1 and the wall temperature T will not be a function of time. This result
cannot be the case physically; therefore, the solution for 7\2 =0 is rejected. The

choice between 2 <0 or )\2 > 0 is made by attempting to solve the equation by using
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-)\2 and then +7\2 , one of which will lead to a solution. With the use of —Az, equation (A4)

becomes
" 2
X"x) +2° - Xx) =0
From Wiley (ref. 3, p. 88), the solution for this equation is

_ iAx -

Equation (A5) then becomes

_ N
F =Ce ™ % (A7)

This equation is periodic when Az is imaginary. The solution requires that the exponent
be of the form wf. Therefore, }\2 is set equal to iw/@, and

2

Substituting for X and A° in equations (A6) and (A7) gives

X = cleii(1+i) (w/20)x CzefFi(1+i) (w/2a)x

and
Substituting these solutions into equation (A2) gives a solution to the differential equa-

tion (A3) which is periodic.
Set
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The solution thus becomes
T = Ae*T¥g i(whFnx) N Bej:nxe—i(wG:t?]X) (A8)

where the constants A and B are CC1 and CC2, respectively, and can be combined
with no change in the solution. The choice of sign used in equation (A8) does not matter
because the constants are arbitrary. The top sign is used in the following derivation.

Applying the boundary conditions determines the constants A and B, but first some
preliminary work is necessary. The boundary conditions require the use of 3T/3x.
Taking the derivative of equation (A8) with respect to x gives

%3 ) nI:Ae-nxe-i(we ¥ (5 _ 1) 4+ BeM e HWO+M) (1 _ iil (A9)
X

Using boundary condition 2 and setting equation (A9) equal to 0 at x = L give

A _enxe—i(w9+nx)(l - i)
B e—'r)xe—i(we—nx)(i - 1)
A_ e2nx—'1277x
B
A L 2nL(1-) (A10)
B

Using boundary condition 1
ATGe—in - Ao iwd _ goriwd _ ﬁ@e—iwe(i 1) - Be'iwe(i _ 1-)]
h

and dividing by e lwd give

AT, -A-B =;h‘i§l[(A - B)(i - 1] (A11)

Note that, if the fluid temperature is assumed to be Tg= ATGe+i“’9, the constants A
and B become functions of # because e'“"9 cannot be eliminated by division (see eq.
(A11)). Solving equation (A10) for A and substituting in equation (A11) give
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AT, - Be2L(-D _ g - :}ffﬂ [Beznl‘(l'i) - B](i - 1)
G

Collecting terms and solving for B give

AT
B = G
[1 ) ean(l-i)](i _ K, |:1 . eZnL(l-iE]
hg
Rearranging this equation gives
AT
B = G
_Kn [1 i ean(l-i)] . [1 . eZnL(l—i)]+ . Kn [1 i eznm-i)]
hg hg
Changing to the polar form gives
AT,

B =

———'hK" I:l - eZ"L(cos 2nL - i sin 2nL)] + [1 + ean(cos 2nL - i sin 27;L)] +1i %ﬂ [1 - ean(cos 2nL - i sin ZnL)]
G G

Collecting the terms in the denominator on i gives

ATG

< - I—<ﬂ->+ <§ﬂ + 1) 2L cog 29L - K1 o2nL gin 2pL + i (ﬁ - 1) 2L gin 27L +Kn _2nLKn o 2nL
hg/ \hg Bg bg e hg

The following trigonometric substitution can be made in the previous equation:
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where

2
E = 1+2 Kn + 2<I—(ﬂ>
hg \bg
Then
AT
B= G

1-%n Eean(cos € Cos 2nL - sin € sin 2nL) + iI:EQ + eanE(-cos €g Sin 2nL - sin € cos 2nL):|
h h
G G

This equation simplifies to

AT
B = G

_Kn + eanE cos(eG +2nL) +1i Kn . eanE sin(eG + 2nL)
hg hg

The complex numbers must be in the numerator so that the phase shift accounts for the
resistance of the boundary layer hG. This requirement will become apparent. To put
the complex numbers in the numerator, divide the denominator into the numerator in the
previous equation for B by multiplying each number by the conjugate of the denomina-
tor. The following equation results:

AT e'.IE
B = G (A12)

2 2
1-274 2l cos(eG +29L)| + Kn _ ¢2nlg sm('EG + 27L)
hG hG

From equation (A10), A is

ATGeane-i(£+2nL)
A= (A13)

2 2
1 - K1, o2nlg cos(es + 2nL)| + Kn _ e21lg sin(eq + 2nL)
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where

Kn _ ¢%lg sin(eGr + 2nL)

Kn 2nLE cos(eG + 2nL)

From equations (A8), (A12), and (A13), the solution can be written as

ATGEW(ZL-X)e'i(we'nx+£+2nl‘) + enxe—i(w9+nx+£)]
T = 1 _ (A14)

2 2
_Kn, e2nlg cos(eG +2nL)| + Kn _ ¢2nlg sin(eG + 2nL)
e hg

If the real part of the driving temperature, that is, TG = ATGr cos wh, is selected, the
imaginary part of the solution can be dropped. Equation (A14) then reduces to

ATG[en(ZL-X) cos(wh - nx + £ + 2nL) + ™ cos(wh + nx + E)]

T = (A15a)
Kn . 2qL 2 Iky 2L 2
- 271, e*TE cos(€G+ 2nL){ + 20 _ Mg sin(eG+ 2nL)
h h
G G
where, as defined before but restated here,
| K Kn'\2
he  \lg
|
\ and
Kn _ eanE sin(eG + 279L)
h
¢ = arc tan —O (Al5c)
1-Xn, eanE cos(eG + 2nL)
hg
2

. Equation (A15a) is the required solution. The values for A®> 0 can be ruled out if the
same process using A° is followed. Boundary condition 1 will then yield a solution for
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the constants that are functions of time, which cannot be; therefore, 22> 0 is rejected.
It should be stated that %> 0 will work if Tg = ATGele. The solution for this

case will be the same as for equation (A15a).
Determination of Phase Lag
The phase lag is determined with a value found for w@ such that T =0. This con-

dition will occur when the wall-temperature vector in the complex plane reaches -7/2
radians. Therefore, the phase lag is

0o |

© - wh (A16)

This quantity is less than zero for the wall temperature lagging the fluid temperature.
Setting T = 0 in equation (A15) gives

en(2L-x) - cos wh cos(nx + &) - sin w9 sin(nx + £)
oTX cos wh cos(-nx + & + 2nL) - sin w@ sin(-nx + £ + 2nL)

Then

ezn(L'x)[cos(—nx + & +2nL) - tan w sin(-7x + £ + 2nL§]= -cos(nx + £) + tan wh sin(nx + &)
from which,

2n(L-x)

e cos(-nx + & + 2nL) + cos(nx + &)

tan wf =
e@(LX) gin(nx + £ + 20L) + sin(nx + &)

and

2n(L-x) - £
vl = arc tan e cos[£ +n(2L x)] + cos( + nx) (A17a)

e2n(L—x) sinEZ +n(2L - xﬂ + sin(€ + nx)

The heat-transfer coefficient can then be determined from the phase lag. Solving
equation (A17) for ¢ and then for h; gives
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wh = arc tan 2n(L-%) [cos £ cos (2L - %) - sin £ sin (2L - x)] + cos £ cos 7% - sin £ sin nx

e2n(L-x) [sin £ cos n(2L - x) + cos & sin n(2L - x)] + sin £ cos nx + cos £ sin nx

e2n(L-%) [1 - tan £ tan n(2L - x)] 4+ COSTX o _ SINTX
cos 7(2L - x) cos n(2L - x)

eZn(L—x) [tan £ + tan n(2L - x)] +tan & cos nx + Sin nx
cos n(2L - X) cos 7(2L - x)

wh = arc tan

-tan El}2n(L—x) tan (2L - x):]+ __sinpx + e217(L-x) +__Cos nx

wd = arc tan | cos n(2L - x) cos .n(ZL - X) (A17D)
tan & e217(L-x) + cos 7X N eZn(L—x) tan n(2L - x) + sin 7x
cos n(2L - x) cos (2L - x)
From equation (A 16),
wh=T- Q
2

where ¢ is less than zero for the wall temperature lagging the fluid temperature, and

tan wb = tan(g - go)

tan wh =cot ¢

The foregoing expression is used in equation (A17a) to write

cot p{tan 5,53277(14—}() + ——COS X :,+ e2M(L-X) o n(2L - x) + ___sinmx

cos n(2L - x) cos (2L - x)
+tan £1e2M(LX) tan peor, - x) + ——SRTX [ o2n(L-x) _ __cosmx _ g
cos (2L - x) cos n(2L - x)

Solving for tan £ gives
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e277(L-x)|:1 - tan (2L - x)cot (p] +__Cosqx _ sinmxcote
cos (2L - x) cos n(2L - x)

e27;(L-x) + cosmx .ot 0+ &2n(L-x) tan n(2L - %) + sin nx
cos n(2L - x) cos n(2L - x)

m
Q
Q
Z
>
[y
&

tan £ =

This expression is set equal to CON for simplicity and the definition of £ is used to

write

Kn _ ¢2nlg sin(eG + 2nL)
—_— h
CON = tan £ = —C
1-Kn, 2nlg cos(e + 2nL)
hg

The solution for hG/Kn is as follows: Keep in mind the trigonometric substitution for E

and €g and write

Kn | e277L Eﬂcos 29L + <1 + ETJ) sin 2nL| = CON <1 - Kn + e277L (1 + Kn> cos 27L - Kn sin 2171J
hg hg hg hg hg hg

Kn {1 - ean(cos 29L + sin 29L) - CON,:an(cos 2nL - sin 2nL) - 1]}
h
G

2nL

= eZnL sin 27L + CON(e cos 2nL + 1)

Solving for hG/Kn give

h 1- ean(cos 2nL + sin 27L) - CONEaan(cos 2nL - sin 2nL) - 1]

Q

(A19)

A
3

ean sin 2nL + CON(e277L cos 2nL + 1)

Simplifying equation (A18) by first multiplying the numerator and denominator by
tan ¢, and collecting terms gives
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_[e2ML%) tan neal, - x) + —SIRTX ~—j| + [eZn(L—x) 4 —COS X :ltan ®

6&\]— = _ cos (2L - x) cos n(2L - x)
+[6271(L-x) 4 ___COS 7X ]+ ezn(L"X)[tan n2L - %) + — Sin~n—x——)]tan ¢
cos (2L - x) cos (2L - x
Defining

e2n(L-x) LGOS TK

A(x,L.7) = cos n(2L - ?c)
e2n(L-x) tan n(2L - x) + —— S0 TX___
cos n(2L - x)
2n(L-~
AR, L,n)= e n(L-x) cos n(2L - X) + cos nx
e2n(L-x) sin n(2L - x) + sin 7x

Then

con = A Lintang - 1 (A20)
A(x,L,n) +tan ¢

Equations (A19) and (A20) are the solutions presented in the text. For x =L,
A(x, L,n) = cot 7L

CON = tan ¢ - tan nL
1 + tan ¢ tan nL

CON = tan(p - 1L) (A21)

31




REFERENCES

1. Anderson, Bernhard H.: Improved Technique for Measuring Heat Transfer Coeffi-
cients. Proceedings of the Fourth AFBMD/STL Symposium, Advances in Ballistic
Missile and Space Technology. Vol. 2. Cnarles T. Morrow, ed., Pergamon Press,
1960, p. 352.

2. Bell, J. C.; and Katz, E. F.: A Method for Measuring Surface Heat Transfer Using
Cyclic Temperature Variations. Heat Transfer and Fluid Mechanics Institute,

ASME, 1949, pp. 243-254.

3. Wylie, Clarence R., Jr.: Advanced Engineering Mathematics. Second ed., Mc-Graw-

Hill Book Co., Inc., 1960.

32 NASA-Langley, 1968 —— 33 E-4343



FIRST CLASS MAIL

SPMF. ADMN IS’I'RATIQN

. If Undeliverable ( Section 1°
POSTMASTER: Postal Manual) Do Not Ret

—

“The aeronautical and space activities of the United States shall be

conducted so as to comtribute . .

. to the expansion of human knowl-

edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest pmcncable and appropriate dissemination
of information concerning its activities and the results thereof”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Informatxon less broad
in scope but nevertheless of 1mportance asa
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and

technical information generated under a NASA

gontract or grant and considered an important
<contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English,

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs;

appaitad ons. 2CauGe

Technology Utilization Reports and Notes,
and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

a

A A S Pu ™A~ A ™\ A4 [l

ATIONAL AERONAUTICS AND SFACE ADMINI

TR OA TN
IRMATIVIE

Washington, D.C. 20546



