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OPTIMIZATION OF SELF-ACTING THRUST BEARINGS
FOR LOAD CAPACITY AND STIFFNESS
by Bernard J. Hamrock

Lewis Research Center

SUMMARY

A linearized analysis of both infinite- and finite-width (rectangular) step thrust
bearings was performed. Dimensionless load capacity and stiffness of the finite-width
bearing are expressed in terms of a Fourier cosine series. The dimensionless load
capacity and stiffness are a function of the dimensionless bearing number A, the pad
length-to-width ratio 2, the film thickness ratio k, the step location parameter vy,
and the feed groove parameter 7.

The equations obtained in the analysis were verified. The assumptions imposed
were substantiated by comparison of the results with an existing exact solution for the
infinite-width bearing. A digital computer program was developed which determines
optimal bearing configuration for maximum load capacity or stiffness. Simple design
curves are presented. Results are shown for both compressible and incompressible
lubrication. Through a parameter transformation, the results are directly usable in
designing optimal step sector thrust bearings.

INTRODUCTION

One of the first to apply the step film to a gas-lubricated bearing was Kochi (ref. 1).
For the infinitely wide single thrust bearing, Kochi obtained an exact numerical solution.
The expressions for the pressure were contained in a set of transcendental equations.
Graphical methods were used to obtain the resuits.

In practical applications, one must use finite-width bearings. The finite-width step
thrust bearing can appear in the shape of a rectangular pad or as a sector. For both the
rectangular and the sector step thrust bearings, there is a definite need to know the op-
timal step configurations for maximum load capacity or maximum stiffness.

Ausman (ref. 2) in 1961 analyzed the gas lubricated step sector thrust bearing. He



applied linearization assumptions to the Reynolds equation, thereby enabling the pres-
sure to be determined. With the pressure known, the load capacity was obtained. The
expression for the load capacity appeared in terms of eigenvalues and Bessel functions.
Ausman's results do not lend themselves readily to obtaining optimal step configurations
for maximum load capacity or maximum stiffness when various bearing operating condi-
tions are considered. The reason for this is the way in which parameters were made
dimensionless and the nature of the resulting equations.

In this report, a rectangular step thrust bearing is analysed. Linearization as-
sumptions comparable to those imposed by Ausman (ref. 2) are used. The sector bear-
ing results are obtained directly from the rectangular step bearing results since curva-
ture effects are shown to be very small. Because of the simplified nature of the result-
ing equations, a computer program was developed which optimizes step parameters for
maximum load capacity or maximum stiffness for a wide range of bearing operating
conditions. Results are shown for both compressible and incompressible lubrication.
Therefore, the objective of this report is to present easily usable design information for
finding optimal step bearings of rectangular or sector shape. The results are valid for
a wide range of operating conditions.

SYMBOLS

A/ B,D,E integration constants

AA,BB, CC,DD,|  copstants defined in egs. (Al) to (A8)
EE, FF, GG, HH

b width of rectangular thrust bearing

C film thickness in ridge region

G constant

h film thickness

In Fourier coefficient

8] separation constant

K dimensionless stiffness, -C(d6W/2C)

k film thickness ratio, (C + A)/C

L l rt? st 1 g

l length of ridge, step, or feed groove region depending on subscript
M last odd positive integer used in evaluation of Fourier cosine series
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X M £ £ = =5 <

™ < M

odd positive integers
number of pads placed in overall length

dimensionless pressure, (p - pa)/ Py

pressure

ambient pressure

mass flow rate

inner radius of sector thrust bearing

outer radius of sector thrust bearing

film thickness ratio as defined by Kochi (ref. 1), 1/(k - 1)

velocity of bearing surface

dimensionless load capacity of finite-width bearing, w/pab(lr + 15+ 1 g)
dimensionless load capacity of infinite-width bearing, woo/pa(lr +lg+1 g)
load capacity

load capacity per unit width

dimensionless length coordinate, x/b

x/L

coordinate in direction of motion

dimensionless width coordinate, y/b

coordinate in direction of width of bearing

dimensionless bearing number used by Kochi (ref. 1), 3uU(lS + lr)/pa Az =
Ak - 1)2

depth of step

feed groove parameter, (Zr + Zs)/(lr + Lo+ Zg)

dimensionless bearing number, 6u Ub/paC2
2
61U(Lg + 2, + L) [0, C

ratio of length to width of pad, (¢ . + 1 + 12 )/b

g
viscosity of fluid

‘/(A/Z)2 + mznz



£ Y (A/2k2)2 R

Py mass density of lubricant

Y step location parameter, Ig/(2,.+ Z_ + 1 g)
w angular velocity

Subscripts:

g denotes feed groove region

r denotes ridge region

S denotes step region

0 denotes infinite-width analysis

BEARING DESCRIPTION

Sketch (a) shows the rectangular step thrust bearing to be studied. The ridge region

Feed
groove
region

Step

regiof?"1~‘\
Ridge

{region

(a



is where the film thickness is C, and the step region is where the film thickness is

C + A. The feed groove is the deep groove separating the end of the ridge region and the
beginning of the next step region. Although not shown in this sketch, the depth of the
feed groove is orders of magnitude deeper than the film thickness C. A pad is defined
as the section that includes a ridge, a step, and feed groove regions. The length of the
feed groove is small relative to the length of the pad. It should be noted that each pad
acts independently since the pressure profile is broken at the lubrication feed groove.

LINEARIZATION ASSUMPTIONS

The Reynolds equation for the steady-state isothermal gas-lubricated thrust bearing
can be written as

i(p@>+i p@ =————6uU§B (1)
ox o0x oy oy h2 oxX

Expanding and rearranging terms results in
2

2 2 2
ap+ap_6uU@:_1[<_ag> +<_a£>] (@)
aXZ ay2 ph2 X p [\ox ay

In order to obtain an analytic solution to the foregoing equation, linearization as-
sumptions will be imposed. The first linearization assumption states that the right side
of equation (2) is zero. The validity of this assumption was shown by Scheinberg (ref. 3):
For U — =, the terms in equation (2) other than the one containing U become insignifi-
cant. Therefore, they can be neglected. Since the right side of equation (2) becomes
zero for the two limiting cases, he concludes that it is a reasonable approximation to
neglect these terms for all values of U. A second and final linearization assumption
required is that p, where it appears as a coefficient, be replaced by the ambient pres-
sure p,. When these assumptions are applied, equation (2) becomes

82p

8x2

o°p _ 60U op 3)

ay2 pahz ox

+



PRESSURE ANALYSIS OF FINITE-WIDTH BEARING

From equation (3), the linearized Reynolds equation can be written separately for
the ridge and step regions of the finite-step thrust bearing:

2 2
apr+apr= 6pLU By

2 2 2 ox

X ay paC

2 2
0 ps+a Ps _ euu_ %P

8x2 ay2

pa(c + A)2 ox

The subscripts r, s, and g refer to the ridge region (see sketch (a)), the step region,
and the feed groove region, respectively. With x = bX, y =bY, p,. = pa(P ot 1), and
bg = pa(Ps + 1), the foregoing equations can be rewritten as

2 2
o°P o°P P
X2 av? 0X
2 2
o P P oP
S + S :A S (5)
X2 a2 k2 X
where
A= 6..Ub
2
p,C
and
Kk = C+A
C

Using a separation-of-variables technique on equations (4) and (5) gives

2 2
AX A 2 A 2 :
P, =exp <—2—) A exp X‘\ ’—4—+J1.>ABr exp (-X e +J, [Drsm(JrY) +E cos(JrY)]

(6)



2 2
_ AX A 2 A 2 .
P = exp = A exp|X _4+Js +Bg exp|-X —4+JS [Ds sin(J Y) + Eg cos(JsY)]
2k 4k 4k
(7)
The boundary conditions can be written as
(1) P =0 when X =0
. +1 I, +1 L.+1 +1
(2)Pr=0 when X =S __T_ s r S T EBl-n;,
b ZS +1.+1 b
S l
_ _ - _8 _
B)P,. =P, = z I, cos(mrY)  when X = - WA
m=1,3,...

where Irn is a Fourier coefficient

8Pr BPS
(4)—=—==0 when Y =0
oY oY

(5)P, =P =0 when Y-1

2
(6) Q. = Qg when X = Y

With the use of boundary conditions (1) to (5), equations (6) and (7) can be written as

Im cos(me)exp% X - z,b}\)J
P, = - L exp(-X£ ) - exp|-£ (2a7 - X)
Y exp(-My£,) - exp[-1E (27 - ) { r [ ]}
m=1,3,...
(8)
L cos(mﬁY)expl:—AE x - wx{l
2K
P_-= < , exp(-X&.) - exp(XE,) 9)
S exp(-YrEy) - exp(YAL) ( S 5
m-1,3,... - J



where

. )
2 2
£ = 2) + mr

2
- <_f_x_> ¢ m22
212

The linearized equations describing the mass flow across the ridge and step regions

and

can be written as

3
Q. - f)_a prUC i paC apr
r p,\ 2 120 ox

Py [PUC +8) py(C +8)° apg

® b, 2 121 ox

These equations may be made dimensionless by letting P, = pa(Pr + 1), pg = pa(Ps + 1),
and x = bX as was done for the Reynolds equations. Therefore,

3

p.p.C oP
Qrz_%_%_ AP +1)- L
12pb 0X

3
p.p.(C+A) oP
Q=22 |Ap ,1)-_5
12ub 2 oX

Making use of boundary conditions (3) and (6) gives

oP oP =
k3<-—§> S = Ak -1)(1 + Z I cos(mnY) (10)
X Jxaaw  \9¥ /xoy m=1,3, ...

With the use of equations (8) to (10), the Fourier coefficient I, can be solved:



4(k - 1)sm<ﬂ>

S N2 (11)
m 3
-k &K [1+exp(-260)] &, [1+ exp[-22¢ (7 - ¥)]
mr + +— —_—— o
2 A |1-exp(-260) | A |1- exp[—zkgr(n - z,l/)]
LOAD ANALYSIS OF FINITE-WIDTH BEARING
The dimensionless load capacity for the ridge and step region is
w 9 1/2 ran
W, =—F =_/ f P dX dy
p,bL A 70 Y
L 1/2 g
Ws = ==z / / PS dxX dyY
pabL A Y0 0
Substituting equations (8) and (9) into the foregoing equations and integrating gives
[ee]
2Irrl sin<%> \ gr{l -2 exp[—h(n— ) <§r— ZAH + exp [—2)\51_(77- w)]}
W = — — + N T - .. e 2 e
’ m3rdy \2 1 - exp -2x£ (- )
m=1, 3, .
(12)
(> o]
91 sin (M7 ELL-2exp|-Ay £s+—£ +exp(-2A&,)
m 2 A %
W = - o S — —_—— 2 (13)
m37r3)\ o2 1- exp(-2)\¢/£s)
m=1, 3,.
The total dimensionless load supported by the rectangular step slider bearing is
W+ W
W=t E-w_ W, (14)
p,Lb



STIFFNESS ANALYSIS OF FINITE-WIDTH BEARING

The equation for the dimensionless stiffness is

With the use of equations (12) to (14), the foregoing equation becomes

o0

2I sin<-r9-3> 9 2
K- WAA) - N2/ (1o L\ ¢ BB)- £ (cC)+ A A
_ A\ (i 1) g BBy g (co)+A (DD)+ (EE)
3.3 kd Zgr 2£sk5

m T

m=1,3, ..
(15)

where AA, BB, CC, DD, and EE are constants defined in the appendix.

Therefore, with equations (11) to (15), the dimensionless load capacity and stiffness
for a self-acting gas-lubricated finite-width step thrust bearing is completely defined.
From these equations, it is evident that the dimensionless load capacity and stiffness are

functions of the following parameters:

Dimensionless bearing number

Length-to-width ratio of pad

A= g
b
Film thickness ratio
K = C+A
C
Step location parameter
ls + 1 rt Zg

10



Feed groove parameter

INFINITE-WIDTH-BEARING ANALYSIS

The linearized Reynolds equations for the ridge and step regions of an infinitely wide
thrust bearing can be written in dimensionless form from equations (4) and (5) as

2
P A Py o
- =)
0x2 Koo
22p A 3P
_ 8,® __® 8%
x2 K2 X
where
_ 6“’[{(Zs + 1+ Zg)
o0
2
p,C
and
X = X

> il
s+ r+lg

Proceeding in much the same manner as in the Finite-Analysis section of this re-
port, one arrives at the following expressions for the dimensionless pressure for the

ridge and step regions:

P o= G{l - exp[A (X, - n)]} (16)

11



( R
1-epr°o(1//- ) A X
P = G<___.__L s - —]4 \ 1- exp d (17)
S, ® ‘A lp
1 - oo Kk
exp|——
k2
| N -
where
k-1

CAG\ |1 - exp[A W - )]
1 +kexpl———

2 -A WV
k 1- exp< >
k2

With the pressure known, the resulting dimensionless load capacity of an infinite-
width step thrust bearing can be easily formulated as

e CA W h
1- exp( 5 >exp [Aco(ll/ - 77)] 5
K e &% - 1) {1 - exp[A (¥ - ,,)]} (18)

-AOOI'D - AOO
K J

The dimensionless stiffness can be written as

We=Gln-¥<

~

oW, W (HH)
3c G

K, ,=-C

0

i G(—w(eeni%i) {1~ exm[-a (- 9)]}-20 - 1)n- Wexp[-A o (1- w)]) (19)

co

where FF, GG, and HH are constants defined in the appendix. For the infinite-width
analysis, the dimensionless load and stiffness are functions of the following parameters:

12



Dimensionless bearing number for infinite-width bearing

) GQU(ZS+ L.+ lg)

(2]

paC2

Film thickness ratio

Step location parameter

Feed groove parameter

VERIFICATION OF EQUATIONS

The equations for the dimensionless load capacity and stiffness for the finite- (egs.
(11) to (15)) and infinite- (egs. (18) and (19)) width analyses were programmed on a digi-
tal computer. It should be recalled that linearization assumptions were imposed in
order to obtain simplified results. Figure 1 shows that these assumptions are generally
valid for the infinite-width bearing. This figure compares the results from the present
work with Kochi's (ref. 1) exact solution. The agreement is good. Comparing equations
{2) and (3) with and without the width coordinates y, one could further conclude that for
a finite-width bearing the linearized analysis should be in good agreement with the exact
results.

Table I shows that the solutions for the finite and infinite analyses approach each
other when the length-to-width ratio approaches zero. The results, when 500 terms
(M = 1001) are used in the Fourier cosine series, approach the infinite-width analysis
much closer than when only 50 terms (M = 101) are used. Furthermore, the rate of
convergence is much slower at large dimensionless bearing numbers (A -~ 500) than at
smaller values of A. Note the decrease in dimensionless load capacity W when
A increases from 100 to 500. This is due to the fact that the step parameters are held

13



constant; that is, the step parameters chosen are closer to the optimal for A = 100
than for A = 500.

Table II compares the dimensionless load capacity obtained from Ausman (ref. 2)
with the present work for various dimensionless bearing numbers A and inner- to
outer-radius ratios Ri/Ro' Ausman (ref. 2) considers curvature effects, whereas the
present work does not. The equivalent length of a sector pad is assumed to be the arc
length along the average radius. The width is the difference between inner and outer
radii. For all inner- to outer-radius ratios, there is close agreement between the two
analyses. Curvature effects are small. Therefore, the simplified equations of the
present analysis are valid for evaluating the circular sector thrust bearing.

OPTIMIZING PROCEDURE

The problem as defined in the INTRODUCTION is to find the optimal step bearing
for maximum load capacity or stiffness for various bearing numbers. This means,
given the dimensionless bearing number A, finding the optimal length-to-width ratio 2,
optimal film thickness ratio k, and optimal step location parameter iy,. The signifi-
cance of the feed groove parameter 7 is much less than that of the other parameters.
Therefore, for all evaluations, the feed groove parameter 7 will be set equal to 0.97.

The basic problem in optimizing A, k, and ¢ for maximum load and stiffness is
essentially that of finding values of A, k, and y that satisfy the following equations:

W _W _ W _, (20)
X ok Ay
oK _3K_3K _, (21)
ax ok oy

The method used in solving equations (19) to (21) is the Newton-Raphson method for
solving simultaneous equations. This method is described in reference 4 and in most
other tests on numerical analysis.

Therefore, given the dimensionless bearing number A, the optimization computer
program obtains optimum values of A, k, and { for maximum dimensionless load ca-
pacity or stiffness. As a check on the optimization procedure, the following case was
considered: A= A= 1><10'5. This case approaches an infinitely-wide incompressibly
lubricated step bearing for which the results are known. For this case, the computer
program indicated that k = 1.866 and Y = 0.718 were optimal for maximum load ca-
pacity. These results are in exact agreement with Archibald (ref. 5).

14



STEP SECTOR THRUST BEARING

For optimization of a step sector thrust bearing, parameters for the sector must be
found that are analogous to those for the rectangular step bearing. Sketch (b) shows the
transformation.

!

l-q—_N(lS+lr+lg)—_—|

(b)

The following substitutions accomplish this transformation:

b——RO—Ri

N(ls+ l.+1 )——7T(RO+ Ri)

g
w

where N is the number of pads placed in the step sector. By use of the foregoing equa-
tions, the dimensionless bearing number can be rewritten as

2 2
ooy - %)

A (22)
2
p,C
The optimal number of pads to be placed in the sector is obtained from
7R+ R,)
N = o 1 (23)

(A)opt(Ro - Ry)
where ()x)Opt is the optimal value for the length-to-width ratio. The way (}) opt is ob-

tained is discussed in the next section. Since N will not be an integer normally, round-
ing it to the nearest integer is required.

15



DISCUSSION OF RESULTS

Tables III and IV give optimal step parameters (Y, A, and k) for resulting maximum
load capacity and stiffness. The differences between these tables are that table IIT opti-
mizes with respect to load capacity, whereas table IV optimizes with respect to stiff-
ness. The following observations can be made about both tables IIl and IV as A (or
bearing speed) is increased:

(1) The length-to-width ratio A increases; that is, the length of the pad increases
relative to its width.

(2) The step location parameter Y decreases; that is, the length of the step region
decreases relative to the length of the pad.

(3) The film thickness ratio k increases; that is, the step depth increases relative
to the clearance.

Sketch (c) shows optimal step bearings for two extremes of dimensionless bearing num-

bers.

A=410

{c)

Figures 2 to 4 are obtained directly from the data presented in tables III and IV.
Figure 2 shows the effect of A on A, k, and ¢ for the maximum load capacity condi-
tion for a range of A from 0 to 410. The optimal step parameters (A, k, and ) are
seen to approach an asymptote as the dimensionless bearing number A becomes small.
That is, for small A(A = 0.1) the optimal step parameters are not a function of A. In
the incompressible solution of a step bearing, the right side of equations (4) and (5) are
zero. Therefore, it must be concluded that the asymptotic values that the step parame-
ters approach in figure 2 correspond to the incompressible solution. These asymptotes
are A =0.918, ¢ =0.555, and k=1.693.

16



Figure 3 shows the effect of A on A, k, and ¢ for the maximum stiffness condi-
tion for a range of A from 0 to 410. As in figure 2, the optimal step parameters are
seen to approach asymptotes as the incompressible solution is reached. The asymptotes
are A=0.915, ¢ = 0.557, and k = 1.470. Note that there is a difference in the asymp-
tote for the film thickness ratio but virtually no change in A and Y when compared to
those obtained from figure 2.

Figure 4 shows the effect of dimensionless bearing number A on dimensionless
load capacity and stiffness. The difference in these figures is that the optimal step pa-
rameters are opbtained in figure 4(a) for maximum load capacity and in figure 4(b) for
maximum stiffness. Also shown in these figures are values of K and W when the step
parameters are held fixed at the optimal values obtained for the incompressible solution.
A significant decrease between the solid and dashed lines in W or K does not occur
until A > 8.

Figures 2 to 4 contain all the necessary information for the design of an optimal
rectangular step thrust bearing for maximum load capacity or stiffness. With the di-
mensionless bearing number A, the optimal values of A, ¥, and k can be obtained
from figure 2 or 3 depending on whether or not maximum load or stiffness is a major
consideration. From figure 4(a) or (b), the resulting values for the dimensionless load
and stiffness can be obtained. Furthermore, from figures 2 to 4 and equations (22) and
(23), the optimal step sector thrust bearing with load capacity or stiffness considered
can be obtained. The dimensionless bearing number A is obtained from equation (22).
With A known, the optimal values of X, y, and k can be obtained from figure 2 or 3
depending on whether maximum load or stiffness is a major consideration. From equa-
tion (23), the optimal number of pads placed in a sector can be determined. Finally,
from figure 4, the resulting values for the dimensionless load capacity and stiffness can
be obtained.

SUMMARY OF RESULTS

A linearized analysis of both infinite-width and finite-width (rectangular) step thrust
bearings was performed. Dimensionless load capacity and stiffness of the finite-width
bearing are expressed in terms of a Fourier cosine series. The equations obtained in
the analysis were verified. The assumptions imposed were substantiated by comparison
of the results with an existing exact solution for the infinite-width bearing. A digital
computer program was developed which determines optimal bearing configuration for
maximum load capacity or stiffness. Simple design curves are presented. Results are

17



shown for both compressible and incompressible lubrication. Through a parameter
transformation, the results are directly usable in designing an optimal step sector
thrust bearing.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 15, 1970,
129-03.
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APPENDIX - CONSTANTS OBTAINED IN EVALUATING
DIMENSIONLESS STIFFNESS

Constants developed when deriving the dimensionless stiffness expressed herein.
Equations (Al) to (A5) are obtained from the finite-width analysis, and equations (A6)
to (A8) are obtained from the infinite-width analysis.

2K &

A -l 22N exp(-2£ 1) . 3k2gs_ A [nexp(-zgswj
4(k - 1)sin<£§-71> K2 [1 - exp(—ZM;Sz//)]z A 2 1- exp(-zgs)u,[/)

X 351«_ A 1+eXp-[—2?\£r(?7- Mj}um(n- ) exp[Zé M - LPJ (A1)
{1

A2t ) |1 - exp[-2xt(n- W] - exp[-2&_A(n- ) w]

- e st - o)

X {1+eXp[-2A£r(n~ tl/)]}) + exp[ Mn- ) <‘f’ - ZA)] {1 - exp[—Zhér(n- w)]}:l (A2)

cc- . .. 2MA A2 exp(-2apk,) - exp -w<gs +L)
K3 1- exp(-zwgs)]z 2t k2 2k2

2k

x [1 + exp(-2ay¢ BlIbE exp[m,u(g +_~2_>J [1 - exp(-2ay¢ )] (A3)

19



1-2 exp[ AMn - gl/)(i - 5>]+ eXp[ZA’é (n- Rl/)]
L - exp[-21¢,(n - ¥)] |

1-2exp|-2y £g + AN eXp(—2MU§S)
21>
EE=— L =

1 - exp(-2xpEy)

DD =

(A4)

(A5)

) ( r
o — (-2l - Wexp[-A (1 - ¢>][1 - eXp( :"’ﬂ
B |

gl
Ay
+ 5 {1 - exp[—Aoo(U - M]}) (AT)
: .
2 Ay 2 -
HH=_-G" 11, exp v k(FF)+ (1 + Aat) )1 eXp[A - w] (A8)
(k - 1) 2 12 AW
1- exp< )
i % J

20



REFERENCES

. Kochi, Kikuo C.: Characteristics of a Self-Lubricated Stepped Thrust Pad of Infinite

width With Compressible Lubricant. J. Basic Eng., vol. 81, no. 2, June 1959, pp.
135-146.

. Ausman, J. S.: An Approximate Analytical Solution for Self-Acting Gas Lubrication

of Stepped Sector Thrust Bearings. ASLE Trans., vol. 4, no. 2, Nov. 1961, pp.
304-313.

. Scheinberg, S. A.: Gas Lubrication of Sliding Bearings (Theory and Calculations).

Friction and Wear in Machines, Inst. of Machine Sci., Acad. Sci. USSR, vol. 8,
1953, pp. 107-204.

. Scarborough, James B.: Numerical Mathematical Analysis. Sixth ed., Johns

Hopkins Press, 1966.

. Archibald, ¥. R.: A Simple Hydrodynamic Thrust Bearing. Trans. ASME, vol. 72,

no. 4, May 1950, pp. 393-400.

21



TABLE 1. - COMPARISON OF DIMENSIONLESS L.OAD CAPACITY FOR INFINITE-WIDTH SOLUTION AND LIMITING CASE OF

A

22

Dimensionless
bearing number,

FINITE-WIDTH SOLUTION FOR TWO-SERIES TRUNCATIONS

[Feed groove parameter, 7 = 1. 0; step location parameter, ¥ = 0.45; film thickness ratio, k = 2.0.]

Dimensionless
stiffness of
infinite-width
bearing,

K

0

.1825%10°8
.1831x10”2
. 1887x10"

ST

2448x1073
_7860x1072
_8a40x10”1
.6021x107!
_5200x10~!

[SES IS RN

Limiting case of dimensionless stiffness
of infinite-width bearing,

Dimensionless load Limiting case of dimensionless load
capacity of infinite- capacity of finite-width bearing,
width bearing, lim W
w, x-0
M = 101 (50 terms) | M = 1001 (500 terms)
-6 -6 -6
2.5516x10 2.5414x10 2. 550510
2.5517x10"2 2.5416x107° 2. 5507x10™>
2.5533x107% 2.5431x10"% 2.5522x10™%
2.5687x10" % 2.5585x10" 2.5677x10"3
-2 -2 -2
2.7185%10 2.7077%10 2.7174x10
3.2354x107} 3.2226x10" 1 3.2341x107!
5.7998x10" 5.7716x10" 1 5.7923x10" "
5.5600x10" 1 5. 4967x107 ! 5.5165x10" "
TABLE IL - COMPARISON OF DIMENSIONLESS LOAD CAPACITY

OF AUSMAN (REF. 2) WITH PRESENT ANALYSIS

Inner- to -Dirx{er:sionleésibearing numbei*, A ]
outer- 1 B )
. 10 20 40 l 80 ] 160
radius o ) ]
ratio, | pymensionless load capacity of finite-width bearing, W
Ri/Ro (a) )
0.2 0.064 0.141 0.286 0.470 0.638
.063 .138 . 280 .458 .619
0.3 0.059 0.131 0.270 0.457 0.622
F .059 . 129 . 267 . 450 .612
0.4 0.053 0.119 0.248 0.431 0. 602
.053 .118 . 246 .429 .598
0.5 0.046 0.103 0.219 0. 397 0.572
.046 . 102 .218 . 396 . 569
0.6 0.038 0.084 0.184 0. 349 0.530
.038 . 084 .183 . 348 .531
0.7 0.029 0.063 0.141 0.284 0. 466
.029 . 063 . 140 .284 . 466
0.8 0.019 0. 041 0.091 0.195 0. 363
.019 . 041 .091 .196 . 363 J

4 First value from ref. 2; second value from present analysis.

lim K
A=0
M=101. (50terms)| M=1001. (500 terms)
-6 -6
4. 1659%10 4.1808x10
4.1664x107° 4.1814x107°
4. 1720%107% 4.1870x10"
4.2279%x10°3 4.2431x10°°
-2 -2
4.7678x10 4,7849x10
5. 8208x107! 5.8416%10"!
5.5891x107 ! 5.6091x10"
5. 8944x10™ 5.6141x107 "




TABLE III. - OPTIMAL STEP PARAMETERS FOR RESULTING MAXIMUM DIMENSIONLESS LOAD
CAPACITY FOR VARIOUS DIMENSIONLESS BEARING NUMBERS
[Resulting dimensionless stiffness also given when optimum step parameters are used.]

Dimensionless

Dimensionless | Optimal value| Optimal value | Optimal value| Maximum value of
bearing number,| for length-to- | of step location of film dimensionless load stiffness,
A width ratio parameter, thickness capacity of finite- K
of pad, (I,I/)Opt ratio, width bearing,
(k)opt (k)opt (W)max
1070 0.918 0. 555 1.693 1.181x1077 2. 362x107 ¢
2.5x10"2 .919 554 1.693 2. 956x10™4 5.913x1074
5.0x10"2 .920 .553 1.693 5.914x10™% 1.184x10°3
0.1 .922 552 1.693 1.184x10” 3 2. 376x10" 3
.2 .925 .549 1.693 2. 376x107° 4.779x1073
.4 .933 .544 1.694 4.779x10”3 9.669x10™3
.8 948 533 1. 696 9. 670x10™3 1. 979x10™2
1.6 .980 511 1.703 1.980x10" 2 4.145x102
3.2 1.043 471 1.723 4. 144x10"2 9.006x10"2
6.4 1.145 .412 1.790 8.903x10™2 1.974x1071
12.8 1.204 344 1.949 1.878x107 1 3. 854x107}
25.6 1.575 271 2. 240 3.651x10" ! 6.514x10" 1
51.2 2.037 .204 2.698 6.492x10" L 1.003
102.4 2.710 .151 3. 359 1.072 1.456
204, 8 3.642 .110 4.270 1.674 2.034
409.6 4,901 .080 5.501 2.502 2.770
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TABLE IV, - OPTIMAL STEP PARAMETERS FOR RESULTING MAXIMUM DIMENSIONLESS

STIFFNESS FOR VARIOUS DIMENSIONLESS BEARING NUMBERS

[Resulting dimensionless load capacity also given when optimal step parameters are used.]

Dimensionless

bearing number,
A

10
2.5%10"
5.0x10°

. o
DN =

12,
25.

51.
102.
204.

[=2]
DN DR NG o

Optimal value
for length-to-
width ratio
of pad,

) opt

0.915
. 917
. 919

. 922
. 929
. 943

L9713
.035
153

. 353
. 863
. 952

.035
.093
17,172

W U DN = e

Optimal value
of step location
parameter,

W) opt

0.557
. 555
. 554

. 551
. 546
.535

.514
.474
.408

. 328
.232
. 148

.088
. 051
.030

Optimal value
of film
thickness
ratio,

) opt

.470
.471
.471

.471
.472
.474

.479
.494
.937

. 642
. 849
.191

|l Y T S SV Sy SV Y

.687
. 368
. 274

™ W N DD

Maximum value of
dimensionless
stiffness,

®)max

5501077

.334x1074
_278x10”3

. 563x10™3
_152x10™3
L 041x102

= DN

125x1072

_432x1072
_561x10™2

o72x107L
.o70x107 1
.036x107L

105
. 627
.293

I N I N I - T N R Y

Dimensionless load
capacity of finite-
width bearing,

w

115x10”"7

_789x107%
58ax10™4
3

A N =

.118x10”
_245x10”3
_520x10™3

_164x10”3

_882x10™2
.953x10”2

.518%x10”
LT57X10°

. 289x10

.624x10°
.931x10°
. 338

2
1
1
1
1

= 00 O W M 0 WO BN -



W/ PeL

Dimensionless load capacity of infinite-width bearing, W,

10—
8— @ ———— Kochi's solution (ref. 1)
— Present solution
6 —
44—
B Kochi's film
thickness ratio,
s
e 0.3

———————————— ——\/‘—->[5—»m

{for both
solutions)

—\[\—> B .
{for both
solutions)
B | 1 | R
0 4 8 12 16 20 24

Dimensionless bearing number used by Kochi, B = Atk - 112

Figure 1. - Comparison of present linearized results with Kochi's exact
results for infinite-width step slider bearing when step location param-
eter is 0.5.
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Figure 4. - Effect of dimensionless bearing number on: dimensionless load capacity
and dimensionless stiffness,
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