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ABSTRACT

Models of man making predictions of future states of discrete linear dynamic
systems are considered. The task is forced-pace, but the pace is slow enough to
eliminate the effects of reaction time and neuromuscular lag. The best of the several
models considered includes the constraints of limited memory and observation nofse.

INTRODUCT ION

Many human activities depend on the ability to make predictions. We usually
are fairly accurate when making the simple predictions required for such tasks as
walking or opening a door which depend on a (perhaps unconscious) prediction of fut-
ure positions of one’'s legs, arms, etc. However, as we try to predict further into
the future and/or one's understanding of or experience with the process decreases,
our predictive abilities degrade. For example, our abilities are somewhat Vimited
when trying to predict the effect today's technology will have in the next century.

The improvement of man's ability to predict has paralleled the development of
civilization. Fconomic, political, and technological progress is dependent on the
confidence in the future that comes with the ability to make predictions. The fur-
ther into the future that cin be acceptably predicted, the better that investments, ]
policies, and strateyies can be planned.

This paper considers man making predictions of future states of discrete linear
dynamic systems. Several models of the human in this task are presented. Two of
the models, which assume simple extrapolation strategies, do not predict as well as
the human. Two other models, which utilize two methods of system identification,
predict much better than the human. A fifth model, which is basically a linear
regression system tdentifier with a4 limited memory and noisy observations, matches
human performance quite well. These mouels and others are used to discuss the
limitations imposed on human predictive abiiities by physiological and cogritive con-
straints. The effect of these constraints i{s related to the distance into the future
that the human a.tempts to predict.

THE TASK
The following predicifon task has been considered. The subject sat in a darken-

ed booth and viewed the computer-genervated display showe in Figure 1. The display re-
presents the output of a discrete linear dynamic s?m given by
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and the derivatives noted in X were approximated using one-sived difference equations.
Amplitude x 1s on the horizontal scale and time increases downward on the vertical scale.
The points displayed are at = 1.0 units apart.

The subject viewed the 13st ten points of system output. ‘'§s task was to pre-
dict the eleventh point, the horizontal position of which he .ontrolled with a poten-
tiometer. The horizontal line at the top of the display represented the time in which
the prediction had to be completed. The length of the line decreased as the time re-
maining decreased. When the length of the bar went to zero, the subject's prediction
was read by the computer and output on paper tape along with the optima) prediction
and the actual next goint. A1l the points on the display (with the exception of the
subject's prediction) then shifted one unit up the vertical scale and a new point ap-
peared below these points representing the actual point which the subject has just
tried to predict. Thus, assuming that the subject had not moved his potentiometer
during the ting interval, he saw his prediction error as the difference in hor-
{zontal position between the mew tenth point and the eleventh point which he had pre-
dicted. The 8 was then repeated. The time per prediction was fifteen seconds.

proces:
Eacht:'ﬂ:l lasted at least twenty minutes making for at least eighty predictions
per trial.

Eight subjects were used, four of which were well acquainted with system dyna-
mics and optimal control while the nearest acquaintance with the task of the other
four was freshman calculus. They were instructed to minimize RMS prediction error.

Each subject performed a randomly chosen sequence of eight trials. Each trial

was characterized by an approximation to the normalized integrated absolute auto-
correlation function I given by
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C’: s variance of displayed signal.

Equation (2) 1s a measure of the "memory” of the system or, in other words, it is a
measure of the confidence with which the next point can be predicted based solely on
the information contained in a Vimited number of past points. This measure is inde-
pendent of input variance. The input variance was chosen so as to yleld a constant
output standard deviationq, of 100.0 (with a range of 1000.0).

The results of the experiment are shown in Figure 2. It was assumed that the
Tast sixty of the eighty-plus oredictions represented a move or less steady-state
. Lekavior. Since there was no statistically sig-
formance of those subjects familiar with system
dynamics and those unfar ‘ata shown is across all eight subjects. Each
value of the TMS predict .t .o with respevt to optimal eoyrepresents an average
across twenty prediction. ror a particular subject. Thus, the data includes three
values of e, per subject per trial. Hence,o, s a measure of the dispersion o
as

aificant difference bet.
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average prediction errors. Since the performance of the models was measured in ex-
actly the same way, this averaging of aversges presents nao problem.

MODELS

The following mode)s represent several approaches to describing human performe
ance in the above task. They will only be discussed in general. The reader s re-
feried 20 Rouse [ § ] for the derivations.

While all five models vary to some degree, they all include an cbservation noise
parsmeter to account for the fact that a human observer cannot perfectly estimate the
magnitudes of physical stimuli, This psychophysical phenomenon was formalized by the
well-known Weber-Fechner law and its application to the observation of continuous time
series has been exp..imentally investigated by Levison, Baron, and Kietmman [ 3 ] and
discussed by Crossman [ 2 ]. Specifically, the fdea is appliied here by assuming that
the standard deviation °x of the human's estimate of a quantity x is given by

%% = F » constant, {3)
%1

A very sizple model {s that of linear extrapolation fr.s the previous two points

Tgor * Xypo. Oy = Xpy) )

where x is the human's prediction. Since one-sided difference equations have been used
to approximate derivativee, (4) ~an be written as

Tye " Ry ¢ Ry

A slightly more sophisticated model assumes that the mman fits a second-order
curve through the last three points and then extrapolates that curve to make his pre-
dictfon. This can easily be showm to yfeld

Tyy = Ry * By v (6)
The RMS error between each of these models snd the optimal was determined smalyt-
ically and is shown in Figure 3. As can be scen, these models do not perform as
well as the subjects. Increasing f above rero would only make matters worse.

The siaple extrapolater models do not learn about the system from observing it.
Their strategy is fixed.

We will now consider a model that collects data and then

performs & linear regression on that data to i4enti7, the system. This model {is
terwed 3 learning model because the quail:y of the identification improves fa time.
The mode) learns more and more abnul the system as 1t collects wore data. This de-
finition of learning 1s ¢'fferent from classical operent conditioning. The model
gains nothing from its ~istakes. Learning is considered here only in the sense of
gaining Information from {ts environment.

The_tearnivg model makes predictions using
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podel with the experimental data. The data for
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In the 1ialt of infinite trials, the model would be
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and .u(m) 1s the sutocorrelation function. “This mode) i compsred with the ex-

pevmenta inF S. 1t does much better than the subjects did. This is
not mphf?: s:nelm exransion of a few terms in the learning model (8a) shows

terms such as w" ‘""‘.2. ete.

1 tMqumidmdisulmumml. The
|m’lv:=. re simflar to that of the learning mode) except that thave is 3 dowble-

exponential memory weighting function that effectively forgets old daca. This is
mmn'u by chengting (8:? to
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where M s a diagomal square matrix with diagonal elements wy given by
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K- {a-d),

K ® -b/(a-b),
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and D > 1.0 is a free parameter in the model. Computationally, 1t S necessary to
trincate (12) in ord.r for W to be of finite order. [t was assumed that if -? < 0.10,

zuenwi-o.o. .

The Vimited memory mode! {s ~ompared to the experimenta) data in Figure 6. The
paraseters of tne model were found by fitting the data for the trial with Jowest 1.
The resi of the trials were then run with the same parameters. This emphasizes the
closeness of t-e fit of the mode) to data.

The D of 2.5 leads to an effective memory.length of thirteen. This means that
the human uses thirteen past states to compute C. Once he calculates C, he uses only
the present state to make his prediction. The state contains only three past points
(assuming the human used the same derivative formulas as the model). The distinction
between memory length and the length of the state vector is impertant. The humin
night very well decide that the state vector X need only be of length two or thre. which
right include perhaps three or four past points depending on derivative approximstions.

However, when determining i. he should use as much past history as he can. (This as-
sumes tnat the system {s stationary and he realizes that such is the case.) Since the

statistical quality of C ¥s a monotonfcally in. reasing function of memory 'Iength. the
human has no reason to Timit memory lemgth. Thus, it 15 inferred that the effective

lenqth of thirteen found with the model s not the result of the human purposely
discounting the value of less recent data.

DisSCT IO

The ibove mode)s indicate that human prediction stratnjies are more sophis:i-
=4 than simple extrapolations, but also, that humans are suboptimal predictors.

2gse results do not agree with those of Ware [7) or those of Kle!nman, Baron,

on [2]) who assume the human to be an optimal predictor. Howsver.their tasks in-
- huran's motor system to a significant degree and because of this, delays
wromocor dynamics had to e included as sources of suboptimality. Also,

tvstem can have the positive effect of providing proprioceptive cues by the

‘or example, the am-stick combination [4). These factors combined with

at subjects in their tasks were making relatively short predictions, make

of their results with those presented here a 1{ttle difficult.

1 .0 other end of the prediction length scale, Sheridan and Rouse [6] have
stud <o the human's abidity to predict saveral time units into the future, As might
be intu ., the human's performance “-acomes increasingly sudboptimal with prediction

length.  This behavior has been modeled [5) and the conclusion reached wes that the
human has difficulty deteraining the amount of siqnal history due to the noise input.
While this supports the proposition that limited memory constratns him from collecting
sufficient data, applying the 1imited memory model to long prediction tasks yields un-
satisfactory comparisons with the experimenta) data of Sheridan and Rouse, This pro-
blem was further investigated by perform‘ng a 1inear rejression on the experimental dats
from which the parameters of the 1imited memory model were determined, The results of

" the regression were then used to estimate what the human might have done 1f he had
been predicting further into the future. These predictions were inconsistent with
Sheridan and Rouse’s data in the same way that the 1imited memory model was inconsistent.
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This seems to {ndicate that some new source of suboptimelity becomes significant
with lonjer aredictions. The optimal prediction trajectories for long predictions do
not look very much ifke the actus) time series. The optimal trajectory approaches the
mean of the time series exponentially. Adopting an optimsi-l1ike strategy for long pre-
dictions may require a conceptusl{zation that humans find difficult to accept.

By way of snalogy, consider asking & human uninitiated in the Taws of probability
to predi:zt tie flip of an unbiased coin. 1f the person s fnstructed to minimize pre-~
diction arror where heads = 1 and tails = O, the optimal strategy is to predict the ex-
pected vilue of 172, However, anyone who has instructed beginnir~ students of prob-
ability, knows the difficulty of convincing a parcentage of the students that the ex-
cepted vilue of the above coin flip I8 1/2. Usually some student will wonder how 1/2
can be tie expected value »: v in sctuality a flip can oniy yfeld the values of 0 or ).

It seems reasonsble to assign such conceptual difficulties to the coorfitive cat-
e?ory. With this assijynment, Figure 7 summarizes the relative significance of physi-
ological and cognitive constraints on the human's ability to predict. Resction time
and neuromotor dynamics are not constraints (and propfoceptire cues are not aids) when
making long pradictions. Cognitive constraints are not very sir\iﬂcant {relative to
other constraints) for short, fast predictions but incresse in significance as the pre-
diction length increases.
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