NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Reliability enhancement of Navier-Stokes codes through convergence enhancementReduction of total computing time required by an iterative algorithm for solving Navier-Stokes equations is an important aspect of making the existing and future analysis codes more cost effective. Several attempts have been made to accelerate the convergence of an explicit Runge-Kutta time-stepping algorithm. These acceleration methods are based on local time stepping, implicit residual smoothing, enthalpy damping, and multigrid techniques. Also, an extrapolation procedure based on the power method and the Minimal Residual Method (MRM) were applied to the Jameson's multigrid algorithm. The MRM uses same values of optimal weights for the corrections to every equation in a system and has not been shown to accelerate the scheme without multigriding. Our Distributed Minimal Residual (DMR) method based on our General Nonlinear Minimal Residual (GNLMR) method allows each component of the solution vector in a system of equations to have its own convergence speed. The DMR method was found capable of reducing the computation time by 10-75 percent depending on the test case and grid used. Recently, we have developed and tested a new method termed Sensitivity Based DMR or SBMR method that is easier to implement in different codes and is even more robust and computationally efficient than our DMR method.
Document ID
19940018591
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Choi, K.-Y.
(Pennsylvania State Univ. University Park, PA, United States)
Dulikravich, G. S.
(Pennsylvania State Univ. University Park, PA, United States)
Date Acquired
September 6, 2013
Publication Date
November 1, 1993
Publication Information
Publication: NASA Propulsion Engineering Research Center, Volume 2
Subject Category
Quality Assurance And Reliability
Accession Number
94N23064
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available